HMM의 교정 학습과 후처리를 이용한 연결 숫자음 인식에 관한 연구

A Study on the Recognition of the Connected Digits Using CorrectIve Trammg WIth HMM and Post Processing

  • 발행 : 1994.06.01

초록

HMM은 좋은 결과를 보이면서 현재 음성 인식 분야에서 널리 사용되는 알고리즘이다. 그러나, 이 HMM의 학습방법인 maimum like-ihood estimation 은 인식률을 극대화하는 모델의 파라메터 값을 생성하지 못하는 단점이 있다. 이러한 문제점을 보와하기 위하여 연결어 인식 알고리즘인 Segmental K-means의 학습과정에 교정 학습법을 도입하여 모델 파라메터 값을 재조정 해 준다. 한국어 연속 숫자음은 영어 연속 숫자음과 달리 연음 현상의 영향을 많이 받는다. Level building 과정에서 연음에 의한 오류를 감소시키기 위해 연음에 의해 발생할 수 있는 단어를 별도의 모델로 추가했다. 이렇게 추가된 단어 모델들에 대한 몇가지 규픽을 인식 결과에 적용하여 출력을 다시 조정한다. 본 시스템은 TMS320C30 프로세서 내장한 DSP 보드와 IBM PC 사엥서 구현되었고, 표준 패턴은 실험실 잡음 환경에서 남성화자 3명을 대상으로 작성하였다. 인식 결과 21종 전화번호 252개 데이터에 대하여 화자 종속으로 92.1% 인식률을 나타내었다.

키워드