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ABSTRACT Application of 난略 filtered-x LMS additive filter to active noise 

cancellation requires to estimate the transfer characteristics between the output 

and the error signal of the ad理tive canceller. We analyze the effects of 

estimaticxi accuracy on the convergence behavior of the canceller when the 

input noise is modeled as a sinusoid.

1. INTRODUCTION

In active ntnse cancellation, the acoustic noise to be cancelled is often generated 

by rotating machines and thus can be modeled as the sum of a fundamental 

sinusoid and its harmonics [1]. In this paper we derive an adaptive canceller 

structure and analyze its convergence behavior when the acoustic noise is 

assumed a single sinusoid.

2. SYSTEM MODEL

When the noise is a sinusoid, the acoustic and speaker-acoustic-microidione 

paths [2] can be described by the in-phase (7) and quadrature (Q) weights as 

shown in the upper branch of Fig. 1. In this case the adaptive canceller 

structure also becomes to have two weights Wi(n) and ioq(zi), with I and Q 

inputs, x/(n) and xq(h), respectively. Thus, the output of the canceller, yin), 

is expressed as

y(n) = wi(n) x/(n) + WQ(n) XQ(n) (1) 
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where x,(n) =A 次食皿+ 加) 스 厶 cos'" with ®o and n being a normalized 

frequency and discrete time index, respectively. Also, referring to the notation 

in Fig. 1, the error signal e(n) is r电)resented by

e(n) = ci ei(n) + cq &q (n) + n(n) ⑵

where 笊 (n) 숨 e(n) = d(n) - y(n) and e(?(n) is the 90 , phase-shifted 

version of ei(n), and n(n) denotes zero-mean measurement noise. Assuming 

th” w/(n) and wg(n) are slowly time-varying as compared to xz(n) and 

xo(n), the 90'phase-shifted output is given from (1) by

yo(n) = wAn) xo(n) + {-x,어)} ⑶

Fig. 1 The diagram of the active noise cancellation system under study.

Fnwn (1), (2), and (3), one can obtain an LMS weight update equation by 

minimizing e2 (n) and using a gradient-descent method as

wj(n+l) = w/(n) + n e(n)( c/Xi(n) + cq XQ(n))
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and w®(n+l) = WQ(n) + ue(n)(czxo(n) - cqxz(n)} (4)

where u is a convergence constant It is noted that to in屮lemant the filtered-x 

LMS algorithm of (4), the values of ci and cq must be estimated [3]. In the 

following, we analyze the effects of replacing ci and cq in (4) with ci and 

cq on the convergence behavior of the canceller.

3. CONVERGENCE ANALYSIS

To see how the additive algorithm derived in (4) ccmverges for inaccurate ci 

and cq , we first investigate the convergence of the expected values of the 

two adaptive weights. From the underlying signal model (Fig. 1), E[ioz(n)] 

and K[wq(/i)] are eaqpected in the steady state to ^roach s； and wq, 
reqjectively. To sin理)lify the convergence equation, we may introduce two 

weight errors as

스 and u°(n) 스 -toj? (5)

Then, from (2), (5) and Fig. 1, we get

ei(n) = -v/(n) xj(n) - v&(n) XQ(n)

and eg (n) = -v/(n) xo(n) + vein) xi(n) (6)

Inserting (5) into (4) and rearranging the result using (2) and (6), and taking 

expectation of both sides of the resultant two weight-error equations, we can 

get the following coivergence equation based on the independence assun^ition 

on the underlying signals； x(n), n(n), v/(n) and VQ(n). That is,

[ Mui(n+1)] ] = [ a p 1 [ 剧京切 ，기

L F[u0(n+l)] J L -P a J I E[v0(n)l (，)

where a ■ 1 -liA2 (ci ci + cqcq) and P ■ u j42 ( czcq - ci cq).

Here, defining gain and phase response parameters as
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8 스 V Cz+CG , g 스 V C/2+ co2 ,

L 스 tant ( 뜸") , 6C = tan-1 ( - fq ) ,

a and B in (7) can alternatively be ejqiressed as 

a 金 1--2*  S ^cos A0C and B 스 - nA2 g sinAec . (8)

where A8C 스 L - 服 .

Also, using similarity transformation we can coivert (7) into the transformed 

domain as

E[ 5i(n+l)] 1 = [ 1-Xz 0 ] \E[ v/(n)] 1 ⑼

.E [ VQ(n+l)] J L。l-x<? LEE v<?(n)] J 

where 房=专 uA2gg[ cos A8C ± jsinA0C ], i = I and Q.

It should be noted fixim (9) that since 為「s are Comdex values, so are the 

transformed weight errors. Therefore, we consider the convergence of the 

magnitude of the transformed error as

p>(n+l) = I 1 -X； I p/(n), i = I and Q (10)

where P；(n) 스 I E[u；(n)] I .

We can see firom (10) that the magnitude cwiverges exponentially to zero (Le., 

EtiOiCn)] to w*  ) under the fdlowing conditim：

I 1 - X, I <1 " (11)

The time constant of the exponential convergence is derived from the following：

e ~Ux, 스» = I 1-房 I for large t；, i = I and Q (12)

From (9) and (12) we get
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X,=——j--------：---- *----- :---------K , i = I and Q (13)
1-y 1- v^A2gg cos A0C + -^- ik2A4g^ g

Next we investigate the amversence of the inean-aquare-error (MSE), 

£[e2(n)]. Using (2), (6) and (8) we can express the MSE as

E[e2(n)] =~^-g2 SM) + 勇 (14)

where 房 스 丘[/(几)] and t(n) 스 以诸統)] + Mv©(n)].

It is noted from (14) that the convergence study for the MSE is equivalent to 

that for the sum of the squared weight errors. Inserting (5), (2) and (6) into 

(4), squaring and taking expectation of both sides of the result yields

^(n+1) = y Un) + 8 (15)

where t A 1-hA2<<cos A8C + g2/!4^2 [9-cos(2A8c)] and

8 스 u2A2 g2 房.

Thus, when I t I < 1, (15) has the solution as

4(n) =r"e(O) + -^~5 (16)

Ccmsequently, the convergence of the sum of the squared weight errors can be 

obtained from (16). The results of the convergence analysis are summarized in 

Table 1

4. CONCLUDING REMARKS

We can easily see finom Table I that the effects of parameter estimation 

inaccuracy cxi the convergence behavior of the filtered-x LMS algorithm are 

characterized by two distinct ccmponents : Phase estimation error A8C and 

estimated magnitude g. In particular, I △LI should be less than 90° for 
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convergence. It is, however, noted that once Km or kv is selected, the 

convergence turns out to be determined only by The convergence speed is 

the fastest for k = 1/2 regardless of △凱.When A0C = O and g = gt the 

convergence result becomes the same as the LMS case. In conclusion, the 

convergence of the filtered-x LMS algorithm is shown to be strongly affected 

by the accuracy of the phase response estimate.

Table I The results of the convergence analysis of the Filtered-x LMS 

algorithm.

Mean of weight error Summed variance of weight errors 

(Magnitude)

会 Wr 斤 스 m 妒gf [9-cos(2Z2c)]
K" - 4 cos △ L Kv - 16 cos( A ec)

工匸 s ， 4 cos A0C s’ 16 cos A6C
Stabihty condition 0<u< 一和厂 °< “ < ' cos(2 )]

or 0 < kb < 1 or 0 < kv < 1

Time constant —；一r-一/ 」
1-V 1-4 5(1-15)COSZA6c

9- cos (2 △&<：) 
16kv (1-kv) coszAec

Steady-state value 0
16 kv o?

A2 g2 (1-KV) [9-cos(2Aec)]
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