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ABSTRACT Application of the filtered-x LMS adaptive filter to active naise
cancellation requires to estimate the transfer characteristics between the ocutput
and the error signal of the adaptive cancellerr We analyze the effects of
estimation accuracy on the convergence behavior of the canceller when the
input noise is modeled as a sinusoid.

1. INTRODUCTION

In active noise cancellation, the acoustic noise to be cancelled is often generated
by rotating machines and thus can be modeled as the sum of a fundamental
sinusoid and its harmonics {1]. In this paper we derive an adaptive canceller
structure and analyze its convergence behavior when the acoustic noise is
assumed a single sinusoid.

2. SYSTEM MODEL

When the noise is a sinusoid, the acoustic and speaker-acoustic-microphone
paths [2] can be described by the in-phase (1) and quadrature (Q) weights as
shown in the upper branch of Fig. 1. In this case the adaptive canceller

structure also becomes to have two weights wi(n) and we(n), with I and Q
inputs, xs;(n) and xo(n), respectively. Thus, the output of the canceller, y(n),
is expressed as

y(n) = wiln) xi(n) + weo(n) xo(n) (1)

¥ This paper is an ocutcome of the project entitled ”A study on the active
noise control system for quieting transformer noise® which is being carried out
with the financial support from Korea Electric Power Company.
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where xr(n) =Acos(egn+és) ® Acosw, with @ and »n being a normalized
frequency and discrete time index, respectively. Also, referring to the notation
in Fig. 1, the error signal e(n) is represented by

e(n) = ¢ er(n) + co eq(n) +n(n) 2)

where e;(n) = e(n) =d(n) - y(n) and eq(n) is the 90  phase-shifted
version of €;(n), and n(n) denotes zero-mean measurement noise. Assuming
that wi(n) and woln) are siowly time-varying as compared to x:(n) and
xo(n), the 90° phase-shifted output is given from (1) by

yo(n) = win) xoln) + wo(n) {-x1(n)} (3)
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Fig. 1 The diagram of the active noise cancellation system under study.

From (1), (2), and (3), one can obtain an LMS weight update equation by
minimizing e’ (n) and using a gradient-descent method as

wrln+1) = wr(n) + pe(n) crxr(n) + cogx¢(n)}
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and weoln+l) = we(n) +ue(ncrxe(n) - coxi(n)} 4)

where u is a convergence constant. It is noted that to implement the filtered-x
LMS algorithm of (4), the values of ¢; and co must be estimated [3]. In the

following, we analyze the effects of replacing ¢; and c¢ in (4) with ¢; and
co on the convergence behavior of the canceller.

3. CONVERGENCE ANALYSIS

To see how the adaptive algorithm derived in (4) converges for inaccurate ¢;
and co , we first investigate the convergence of the expected values of the
two adaptive weights. From the underlying signal model (Fig. 1), Elw;(n)]
and Elwe(n)] are expected in the steady state to approach w} and wb,

respectively. To simplify the convergence equation, we may introduce two
weight errors as
vi{n) = wi(n) -w; and voln) = we(n) ~wy (5)

Then, from (2), (5) and Fig. 1, we get

er(n) = -vin) x1(n) - voln) xo(n)

and eq(n) = -vin) xoln) + va(n) x;(n) (6)

Inserting (5) into (4) and rearranging the result using (2) and (6), and taking
expectation of both sides of the resultant two weight-error equations, we can

get the following convergence equation based on the independence assumption
on the underlying signals; x(n), n(n), vr(n) and ve(n). That is,

[ Elv:(n+1)] ] _ [ « P ] [ Elvin)] s
Eflvg(n+1)] -8 «a Elve(n)]

where a-"l--é‘ wA® (¢crer+ coco) and Bi—%-qu(é:co-c;c‘a).

Here, defining gain and phase response parameters as
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8:“;!“'00, S':“CI"'CO.

Be® tan? (S2), B, tan! (—S2)
Cy Cr

a and B in (7) can alternatively be expressed as
ad |-+ uA’g geosh8, and B2 -uAlg Fsinle, . @®

Whel'e Aeceec- GC‘

Also, using similarity transformation we can convert (7) into the transformed
domain as

E[ vr(n+DD] ] _ [1-1, 0 ] [E[ v:1(n)] (9)
El bo(n+D)] 0 1) LET bo(n)]
where %= 5 uA’g [ cosAB, + jsinA6.],  i=Iand Q.

It should be noted from (9) that since X;'s are complex values, so are the

transformed weight errors. Therefore, we consider the convergence of the
magnitude of the transformed error as

piln+) = | 1-21pi(n), i=T and Q (10)
where p;(n) = | E[vi(n)] | .

We can see from (10) that the magnitude converges exponentially to zero (ie.,
Elwi(n)] to wi ) under the following condition:

l1-%1 <1 v, (an

The time constant of the exponential convergence is derived from the following:

e Vi o 1_—117 = |1-%;1 for large 1, i =1 and Q (12)

From (9) and (12) we get
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= 1 .
T;= , i=Iand Q (13)
1-{1-;14‘!23& cos A0, +"}i' n?4tg? &2

Next we investigate the convergence of the mean-square-error (MSE),
Ele*(n)). Using (2), (6) and (8) we can express the MSE as

2
Ele*(n)] = -4~ g* 4n) + o} (14)

where o2 & E[n?(n)] and &(n) & E{vi(n)] + Elvh(n)l.

It is noted from (14) that the convergence study for the MSE is equivalent to
that for the sum of the squared weight emrors. Inserting (5), (2) and (6) into
(4), squaring and taking expectation of both sides of the result yields

E(n+l) =7 8(n) + 3 (15)
where 2 1-ua’g 7 cos 88, + - w?A'g® &' [9-cos(220,)] and

5 & u3q? g ol

Thus, when 1¥! < 1, (15) has the solution as
Em) =178 (0) + LL0g 16)

Consequently, the convergence of the sum of the squared weight errors can be
obtained from (16). The results of the convergence analysis are summarized in
Table L

4. CONCLUDING REMARKS

We can easily see from Table 1 that the effects of parameter estimation
inaccuracy on the convergence behavior of the filtered-x LMS algorithm are

characterized by two distinct components : Phase estimation emror A8, and
estimated magnitude g. In particular, | A8, should be less than 90° for
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convergence. It is, however, noted that once x., or x, is selected, the
convergence tumns out to be determined only by A6.. The convergence speed is
the fastest for x=1/2 regardless of A8.. When A6.=0 and g =g, the

convergence result becomes the same as the LMS case. In conclusion, the
convergence of the filtered—x LMS algorithm is shown to be strongly affected
by the accuracy of the phase response estimate.

Table I The results of the convergence analysis of the Filtered—x LMS

algorithm,
Mean of weight error Summed variance of weight errors
{(Magnitude)
. _nAgp . wA’gp[9-cos(2A8.)]
K= "4 cos A6, ke = 16 cos (b 6.)
o . 4cos AB, 16 cos A6,
- < -
Stability condition 0<u< Algz 0<u ATg209-cos(206.)]
or 0 < kp <1 or 0 <k, <1
. 1 9- COS(ZAec)
Tune consmt 1‘{ 1"4 K..(I—K,) Coserc 16 Ky (l—xv) COSerc
2
Steady —state value 0 16 x, o

A% g% (1-k,) [9-cos(228,)]
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