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1 Introduction

One of the important characteristics of the response of nonlinear
systems is the existence of subharmonic resonances (1]. When
some conditions in parameter space are satisfied. it is possible.
even in the presence of damping. for a periodically excited non-
linear system to possess a response which is the combination of
a contribution at the excitation frequency and a component at
the system natural frequency. The system natural frequency be-
ing a submultiple of the excitation frequency implies that the re-
sulting response is a subharmonic oscillation. In general, there
also co-exists, for the system, a response at the excitation fre-
quency, and initial conditions determine which of the steady-state
respenses is achieved in an experiment or a numerical simulation.
In single-degree-of-freedom systems with harmonic excitation, de-
pending on the type of the nonlinearity, e.g., cubic or quadratic.
the frequency of subharmonic response is respectively. one-third
or one-half of that of the excitation frequency.

Although subharmonic resonance is one of the principal char-
acteristics of a nonlinear system. the subharmonic responses of
structures in the presence of internal resonances. have been stud-
ied very rarely. In this work, we consider subharmonic responses
in the two-mode approximation of the plate equations. Averaged
equations for the subharmonic response of order three are obtained
for the two-mode approximation of the plate equations. It is as-
sumed that the two modes are in one-to-one internal resonance.
Constant and periodic steady-state solutions of the averaged equa-
tions are studied. Finally. the results of direct time integration of
the original equations of motion are presented and compared with
those obtained from the averaged equations.

2 Formulation of the problem

Consider an isotropic rectangular plate of thickness h, and edge
lengths a and . Let Oxry: be a Cartesian coordinate system
with Ozy in the midplane of the plate and the origin at a corner.
The plate is subjected to a uniform stretching force Ny (in z-
and y-directions). Under these conditions, the von Karman-type
equations of motion for the plate, in nondimensional form. are as
follows:
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where w(z.y.t). F(z,y.1) and g{z.y.?) are the nondimensional
transverse deflection. the stress function. and the external force
normal to the plate. respectively. The dimensionless parameters
€. x. D and c represent the thickness parameter. the aspect ratio.
the ratio of bending stiffness to uniform stretching force and the
damping coefficient. respectively. Furthermore. the subscript z.y
or t denotes a partial differentiation with respect to the nondi-
mensional variable. The boundary conditions considered here are
that all the edges are simply supported and immovable. Apply-
ing Galerkin's procedure with two mode approximation gives the
following two discretized equations of motion:
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where 41, A5 and Aj are the constant non-linear coefficients deter-
mined for the specific mode combinations, and £, and Q5 are the
corresponding natural frequencies of the two linear modes. Here
X is the amplitude of some (m, n) mode and X is the amplitude
of some other (r, s) mode which is in 1:1 internal resonance with
the (m.n) mode.

3 Averaged equations and local bifur-
cation analysis

It has been shown [2] that the method of averaging is a quite ef-
fective tool for the analysis of weakly nonlinear system, especially
for primary resonance case. However, there are some reports say-
ing that the method of averaging doesn’t approximate the original
system appropriately in some secondary resonance cases. In this
work. the method of averaging [3, 4] is applied to approximate the
subharmonic responses of the original system (equations (3)) and
local bifurcation analysis of the averaged system is performed.

In order to study subharmonic resonance of order-three, let us
assume solutions to equations (3) in the form
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where
R
D; = oo = 1,2, (5)

and where (R;,v) (or equivalently (u;,v)) are slowly varying
functions of time. Then by using a variation of constants pro-
cedure and the method of averaging (5, 6] in the spirit of the har-
monic balance method and noting that the excitation frequency
w is nearly three times the two close natural frequencies, Q; and
24, we obtain the following averaged equations for the amplitudes
R; and the phases ¥;:
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where 71(w) = w? — (32)? and o3(w) = w? — (3Q2,). These pa-
rameters o1(w) and o3(w) can be interpreted as external detuning
parameters for the (m, n) and (r, s) modes, respectively. It is easy
to observe from equations (6) that, even when Q, # 0, and/or
Q2 # 0, steady-state zero solutions, that is, Ry = Ry = 0 ,
always exist. Thus, the linear harmonic response at the excita-
tion frequency always exists. When there also exist solutions for
which at least one of the amplitudes, R; or R, is non-zero, the
response of the system has a period which is three times that of

the excitation. Then, for parameter values for which both types
of solutions are stable, depending on the initial conditions, the
response of the system can be periodic with either a period which

is three times that of excitation, or a period which is the same as
that of excitation.

We now present numerical results corresponding to the above
analysis, and for solutions obtained by use of the numerical tools
AUTO (7] and dstool [8]. We consider the response of the plate
when (3.1) mode is directly excited, that is, @2 # 0and Q, = 0.
For @2 < 500.0, both the saddle-node and pitchfork bifurcation
sets (denoted by PF; and PF,) are found to exist for the single-
mode response of the plate. These sets, as obtained by an analysis
are shown in Figure 1.

A response diagram for subharmonic response. for Q, = 200.9,
¢=0.19, is shown in Figure 2. A stable single-mode solution (re-
sponse in (3,1) mode) exists over the frequency interval (SN Sy, PF}).
It undergoes a subcritical pitchfork bifurcation at PF; into a
coupled-mode subharmonic response. The coupled-mode response
is stable only over a small frequency interval (SNC, HB) and
Jjoins the unstable branch of single-mode solutions at PF, via a
supercritical pitchfork bifurcation. Thus, in the frequency interval
(SNC, HB), a single-mode subharmonic, a coupled-mode subhar-
monic, and a single-mode periodic response are stable and coexist.

At frequency near the Hopf point H B, periodic solutions of the
averaged equations arise via a supercritical Hopf bifurcation. This
periodic solutions branch, continued by using AUTO, is shown in
Figure 3 (a). This branch exhibits oscillatory behavior with the
period becoming unbounded as the frequency w is varied. The
solutions in this branch also exhibit a period-doubling cascade.
In Figure 3 (b) is shown a representative phase plot for the limit
cycle solution which closely approximates the homoclinic orbit.
The homoclinic orbit is biasymptotic to the saddle-type coupled-
mode constant solution of the averaged equations.

In Figure 4 are shown the response curves for the case when
both @1 and @2 are nonzero, e.g., when Q; = 300.0 and Q, =
300.0. All the subharmonic solutions now are of the coupled-mode
type. There exist stable constant solutions over the whole fre-
quency interval (SN Cy, SNCs) except for the interval (H By, H B,)
in which the solutions are unstable by a Hopf bifurcation.. The
left and right Hopf points correspond to sub and super critical
Hopf bifurcations, respectively. The periodic solutions branch of
period one is also shown in this figure. The solutions in the super-
critical periodic branch exhibit a period-doubling cascade process.
Numerical study by direct time integration shows, for frequency
near the Hopf point H B3, the period-doubling sequence to a
chaotic attractor via averaging theory, the existence of amplitude-
modulated subharmonic motions of the plate.

In Figure 5 and Figure 6 are shown the response of the original
system of ordinary differential equations, (3), variation of the two
solution components X and X2, and the response in the config-
uration phase space are plotted in these figures. The results in
Figure 5 (a) show a stable representative subharmonic response
which coexists with the stable small amplitude harmonic response.
c.f., Figure 5 (b) at a frequency (w = 14.5) for which the aver-
aged equations predict stable constant amplitude solutions. In
Figure 6 (a), (b) and (c) are shown the response in the configu-
ration space, the time response, and the Poincaré section of the
response, respectively. These correspond to a frequency, w = 22.0,
for which the analysis of averaged equations, presented earlier in
this section, clearly shows the possibility of the existence of an
amplitude-modulated subharmonic response of the plate. In Fig-
ure 7 is shown the Poincaré section of the response at decreased
damping, ¢ = 0.18. It shows torus doubling processes.

4 Conclusion

In this work, the one-third subharmonic response of the plate in
the presence of 1-to-1 intercal resonance has been studied. The
analytical solutions of various bifurcation sets and their numerical
results have been presented. It has been shown that quantitative
as well as qualitative differences in the bifurcation sets and dia-



grams result depending on which mode is directly excited. 1.
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7 Figure 2: Response amplitude u; as a function of the excitation
¢ frequency; @, = 0.0. Q2 = 200.0, ¢ = 0.19.
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Figure 1: Saddle-node and pitchfork bifurcation sets for the single-
mode solutions; @; = 0.0, ¢ = 0.19.
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Figure 3: The periodic solution branch continued from the Hopf .
point;: @1 = 0.0, @2 = 200.0, ¢ = 0.19. a) amplitude response,
b) phase plot of approximate homoclinic orbit for w = 12.1313. /\
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Figure 4: Bifurcation diagrams for the case when Qr =
300.0, @2 = 300.0,and ¢ = 0.18. Figure 5: (a) subharmonic response, (b) coexisting harmonic re-
sponse; (i)Phase plots for a steady-state solution of the original

system of ODE when @, = 300.0, Q: = 300.0,and ¢ = 0.19,

w = 14.50, (ii)corresponding response X versus time.
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Figure 6: (a)Phase plots for a periodic solution of the original
system of ODE when @; = 3000, Q2 = 3000c¢ = 0.19
and w = 22.0, (b)corresponding response X; versus time,
{c)corresponding Poincaré section.
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Figure 7: Poincaré section for a periodic solution of the original

system of ODE when @; = 300.0, Q> = 3000 ¢

w = 220
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