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ABSTRACT

Goal programming has been recognized as an effective tool for many real world
problems, and the analytical procedures for postoptimality analysis have already been
developed. Heuristic measures to reflect the decision maker's preference and to support
consistent judgment are considered for the cases of alternate optima and unimplementable
solutions in this research.

In the linear goal programming algorithm, an unimplementable solution occurs when
the problem has no solution that satisfies the rigid constraints of priority 1. This case is
very similar to that of an infeasible solution for the single-objective linear programming
problem. A problem has an alternative optimal set of solutions if the solution space
associated with that problem has more than a single point. Furthermore, given that the
solution space is a region, any point in that region or any boundary of that region is an
optimal solution. For above two cases of solutions, decision maker may prefer a specific
solution subjectively. An expert system is chosen as a tool to implement several heuristic
rules and to assist the decision maker's decision.

With the help of special structuring of the linear goal programming model, those
problems that could not be considered previously can be settled in postoptimality analysis.

—386—



1. Introduction

In most practical situations, some of the model coefficients are not known exactly and
hence are estimated as well as possible. Also, processes may vary and change with time, or
confidence in either the priority structure or the intrapriority weights may be low. It is
desirable to examine the effect of relaxing some of the constraints on the values of optimal
objectives without resolving the entire problem.

Besides the general meaning of postoptimality analysis mentioned above, proper
measures need to be devised for unimplementable and alternate optimal solutions. For
example, when the simplex algorithm results in an infeasible solution, the only option is to
return to the starting point and thoroughly check the mathematical model, since an
infeasible solution is caused by incorrect model building due to an incorrect transformation
of reality. When we utilize the special structure of goal programming (GP),
aforementioned problems could be solved.

A system which can manipulate more efficiently for those solutions is developed when
applying GP model and algorithm. Unimplementable solutions could be corrected by
changing a part of the decision maker's model, and this correction can be discussed with
the decision maker (DM) and guided by our system. For alternative optimal solutions, our
system makes the DM freely select his or her preferred solution within the optimal range
of continuous line.

2 Case of Unimplementable Solution

In the GP algorithm, an unimplementable solution occurs when the problem has no
solution that satisfies the rigid constraints of priority 1, and is detected by a positive value
of AV, The case is very similar to that of an infeasible solution for the single-objective
linear programming problem in the sense that there is no single point which can satisfy all
rigid constraints. Since the simplex algorithm cannot go beyond the feasible region, no
further implementation is possible and the algorithm terminates in the LP problem.
However, the GP algorithm can possibly indicate the solution that is nearest to being
implementable, and it can be determined which rigid constraint(s) must be relaxed if an
implementable solution is to be obtained.

The first achievement vector is the summation of unwanted deviation(s) for each
absolute goal, i.e., rigid constraint, which should be satisfied in order to be at least
implementable. From the above fact and the definition of an unimplementable solution
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(A" > 0), it can easily be recognized that one or more unwanted deviation variables are in
the set of basic variables and the variables take on positive values.

When this case occurs, our system discontinues the implementation of the GP
algorithm, and starts the routine for correcting the right-hand-side element of the violated
constraint. The RHS correcting routine for the unimplementable solution case can be
summarized as follows:

Let i and § denote row number and value of the violated deviation variable.

Step 1. Detect a deviation variable which takes on positive value (1, or p,),
If there is no more positive valued deviation variable, go to Step 6,

Step 2. Find violating rigid constraint from £,

Step 3.If 1, > 0, ask the DM if decreasing more than B units in i-th RHS is possible,
If p, > 0, ask the DM if increasing more than B units in i-th RHS is possible,
If the DM's response is negative, then go to Step 5,
Otherwise, go to step 5,

Step 4. Receive the DM's input value,
If n; > 0, subtract input amount from the original RHS value,
If p, > 0, add input amount to the original RHS value, go to Step 1,

Step 5. No further analysis is possible. Routine ends, and

Step 6. Perform rerun routine.

3. Case of Alternative Optimal Solutions

A problem has an alternative optimal set of solutions if the solution space associated
with that problem has more than a single point. Furthermore, given that the solution space
is a region, any point in that region or any boundary of that region is an alternative optimal
solution. Any solution in the solution space will produce identical achievement level vector
A’ and different variable values. The existence of alternative optimal solutions is indicated

by an entire column of zero-valued reduced costs Ry’ (k=1,2,---,K and N: set of
nonbasic variables) in the final multiphase tableau.
Let x; denote the nonbasic variable with zero valued R;" for all levels. When x; enters

into the basis, changes in the achievement level vector can be proven to be zero
mathematically by

A::)v =C§k)B—lF_R;k)xj k= 1,2,"',K‘ (1)
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Since R{* for all priority levels are zeroes, the achievement level vector will not be
changed by entering X; into the basis. The change of the variable value may be changed as
follows:

X" =Br-yx, @)

i,

The minimum ratio rule is applied. Let o and i denote the minimum positive value
after the test and the row that the ratio is . Then the basic variable x5 leaves the basis,

the value of x; is increased to o and the alternative optimal variable values are changed by
Equation (2) when X; enters into the basis. A simple example should make this clear and

we will explain how our system works at this point with an example problem. An example
GP model which has alternative optimal solutions is given as follows:

lexico. min. {(p, +p,),(—2x, —4x,)} , (3)
subject to

xl+2x2+nl—px =4, 4

-x,+x,+MN,—p, =1, and (5)

X, N, p; 20 =12 (6)

Table 1 The Final Multiphase Tableau for Alternate Optima.

@ |4 0 0 0
@ lo 0o 1 1
B_ PR X, T p__p, |RHS
2 0 |x |2 1 a1 o
o o0 Imn I3 1 a1 a |s
R lo o -1 -1
RP lo 2 2 0

Table 1 shows the final multiphase tableau. As we can observe at this optimal tableau,
the reduced cost rows of the x, column are zeroes, which means that alternate optima

exist. Optimal achievement level vectors remain unchanged from Equation (1). x, can be
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allowed to enter the basis while maintaining the optimal condition. The changes in the
basic variables and *2 can be represented as

X, 4-2x,
nz = 5 - 312 .
X, X, (7)

The maximum value which can satisfy the nonnegativity condition for each variable
(minimum ratio rule) is 7.
If the value of x, increases to a value greater than % , the value of M, negative. When

the value of x, is equal to 7 , [x m.] =[% 0]; thus, the zero-valued M, leaves the

basis.
At this point, it must be noted that optimal solutions are not just the two points that

correspond to [x1 X, T'lz]=[4 0 5]and [% % 0], but any point on the line

segment joining these two points. By selecting a value for x, (0<x, S%), values of
x, and 1, can be easily computed. This situation can now be generalized. Let p, and p,
denote the extreme points that have like achievement levels at optimality. Then, any point
which is a convex combination of p, and p, is also an optimal solution. It can be

represented mathematically as

Ap,+(1-A)p,, where A €[0,1] (8)

Unfortunately, the traditional method cannot find middle points (0 <A <1), because
the simplex procedure cannot allow an optimal solution which is not an extreme point.
The number of basic variables should be equal to the number of constraints, and the
number of positive-valued variables cannot exceed the number of basic variables. From the
above example, if X, =1, then x, =2 and N, =2. Only two variables can be in the basis,
and there are three positive-valued variables. It contradicts the basic assumption of the
simplex procedure that there are (number of variables - number of constraints) nonbasic
variables with zero values.

In the case of alternative optima, the focal point is the fact that the DM may prefer a
middle point optimal solution. An iterative consulting routine was developed to obtain the
DM's most desirable optimal solution, and can be summarized as follows:
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Step 1. Show the existence of alternate optima.
Step 2. Compute the minimum ratio for a nonbasic variable with all zero reduced costs.
Step 3. Show the possible range and receive the DM's preferred value for the nonbasic
variable. '
Step 4. If the input value is out of range, go to Step 3.
Otherwise, show the optimal result.
Step 5. Ask DM whether the result is satisfied or not.
If yes, append the DM's preferred solution to the output summary. Routine ends.
If no, go to Step 3.

This iterative routine was developed to prevent unexpected results which can degrade
a DM'’s satisfaction. Sensitivity analysis in the general case cannot be continued with non-
extreme point solutions. This problem could be solved by adding a constraint. Let §
denote the value for the nonbasic variable x; which is determined by the DM after
implementing the iterative routine from above. The sensitivity analysis will be started from
the original solution (§=0). our system provides the routine for adding the new

constraint. Select this routine from the menu and add the constraint x; =8. By doing this,
the DM can obtain his or her preferred solution and perform other types of sensitivity
analysis. User interaction during postoptimality analysis is the key reason for implementing
our system.

4. Conclusions and Further Research

In this research, a rule based expert system is applied to implement several heuristic
rules and to reflect the DM's preference for unimplementable and alternative optimal
solutions.

For the case of alternative optimal solutions, the nonextreme point optimal solution is
allowed by our system when the DM so prefers. For the case of unimplementable solution,
the system provides routines which enable those cases to be converted to implementable
solutions by changing a right-hand-side value in the constraint set or by adding a
constraint. Consequently, this research have been focused on the improvement of system
efficiency, the direct reflection of the DM's preferences, and the improvement of user-
friendliness.

For the case of unimplementable solution, changes of the RHS value are manipulated
to obtain implementable solution. The other measure which could solve the problem by
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correcting the technical coefficients is desirable to develop for further research. Alternate
optimal solution module needs to be generalized further. Expert systems may serve as a
good tool for developing such procedures.
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