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The statistical concepts of sufficiency and conditional independence have been attracting
increasing attention in applied statistics, in particular for representing a relation among a
group of variables in a graphical format. Methods of fitting graphical models of continuous
variables such as structural equation models are well described in Bollen (1989). Graphical
models of categorical or finitely discrete variables are representable in the form of undirected
graph, directed acyclic graph, or mixture of them (see Whittaker (1990), Chapter 3.) The
graphical models include the graphical log-linear model (Fienberg (1980); Darroch, Lau-
ritzen, and Speed (1980)), recursive models for contingency tables (Wermuth and Lauritzen
(1983)), Bayesian networks (Pearl (1988)), and influence diagrams (Howard and Matheson
(1981); Olmsted (1983); Shachter (1986); Smith (1989)). Among them, recursive models,
Bayesian networks, and influence diagrams of finitely discrete random variables share a com-
mon feature that the joint probability of the variables involved in each of them is expressible
as a product of marginal and conditional probabilities. Statistical modelling of such mod-
els mostly rests on the methods developed for log-linear modelling (Bishop, Fienberg, and
Holland (1975)).

We will say that a set of variables is fully interactive if the conditional probability of
any one of the variables depends upon the rest of the variables. We say that the log-linear
model of a set of variables is hierarchical if there is a subset of the variables which is fully
interactive and every subset of which is also fully interactive. We call such log-linear model
a hierarchical log-linear model.

The Iterative Proportional Fitting (IPF) algorithm and the Newton-Raphson algorithm
are well known for fitting hierarchical log-linear models. Among the hierarchical log-linear
models, graphical log-linear models as defined by Darroch, Lauritzen, and Speed (1980)
have received lots of attention since they are accompanied by a graphic representation
which depicts the relation among the variables involved in the model, the relation being
interpretable in the context of Markov property. While undirected graphs are used for
graphical log-linear models, we use directed acyclic graphs for recursive models (Wermuth
and Lauritzen (1983)) and influence diagrams (Smith (1989)). We will abbreviate “influence
diagram” into “ID” from now on.

The log-linear model for the variables involved in an ID is not hierarchical in general.
In other words, IDs are not hierarchical in general. In this paper, we will consider non-
hierarchical log-linear models in the form of ID, and present a new approach to estimating
the parameters involved in the model, that is developed by the author of the paper.

A brief review of the methodology for modelling IDs or the like follows. Birch (1963)

—96—



considered maximum likelihood estimation for an ID (although he did not use this terminol-
ogy) of three variables by dealing with its log-linear model as a combination of a log-linear
model of a marginal probability and that of a conditional probability, where the whole joint
probability is given by the product of the marginal and the conditional probabilities. In the
laguage of latent class model, Goodman (1974a, 1974b) related the latent class models to
log-linear models and gave a general algorithm for maximum likelihood estimation for latent
class models (also see Haberman {1977, 1979)). We can view the latent class model as an
ID with the unobserved variables as the parent nodes of the observed variables. Rebane
and Pearl (1987) improved upon Chow and Liu (1968)’s algorithm toward an algorithm by
which one can recover the relation among a set of variables, under the assumption that the
relation is representable via a tree-like directed graph where the parent nodes of each node
in the graph are not connected to each other. Glymour, Scheines, Spirtes, and Kelly (1987)
developed an algorithm which suggests a set of possible causal structures for statistical data
together with their measures of fit, but the algorithm does not provide estimates of the
marginal or conditional probabilities of the nodes in a given structure. Their algorithm
makes use of the property of the correlation coefficients of the pair of variables on a path in
a tree-structure. '

A good side of the ID is that its probability model is multiplicative in some order of
the variables. The other side of it is that the log-linear model of the variables is not
necessarily hierarchical. This point was well addressed by Birch (1963) and Wermuth and
Lauritzen (1983). Methods of fitting ID models to statistical data would include Birch
{1963)’s multiplicative model approach and the Newton-Raphson approach as described in
Haberman (1979). A drawback of these approaches is that the complexity of the model
increases exponentially. The new approach to be presented in this paper is an alternative
approach as a generalised version of the iterative proportinal fitting (IPF) algorithm for
hierarchical log-linear models. We will call the approach Generalized IPF or GIPF approach.

The idea behind the GIPY approach follows. First we transform a given ID into an undi-
rected graph by connecting the parénts of each node to each other. So each child-parents
set becomes a clique in the undirected graph. As in Lauritzen and Spiegelhalter (1988) we
will call such an undirected graph a moral graph. The moral graph may not necessarily
be decomposable. Then we proceed to do the ordinary IPF for the log-linear model corre-
sponding to the undirected graph with the following structural constraint imposed in the
IPF process. The structural constraint applies to the sets of the newly connected nodes and
their parent nodes. Such a set actually consists of all the newly connected parent nodes
of a node and all the parent nodes of the newly connected parent nodes. We will call the
set a constraint set. In the ordinary IPF process, we impose the marginal structure among
the variables in each constraint set so that the structural constraint may be realized in the
ordinary IPF process.

The GIPF approach is easy to apply for fitting non-hierarchical models in the form of ID
whether they contain unobserved variables or not. When a non-hierarchical model involves
unobservable variables, we can employ the idea behind the EM algorithm (Goodman (1974),
Haberman (1979)).
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We applied the GIPF approach to a couple of simulated data sets, each involving 14
binary variables. The fitting result'strongly suggests that the approach is very useful for
fitting non-hierarchical models of categorical variables in the form of ID.

Keywords and phrases; Iterative proportional fitting, Log-linear model; Maximum likelihod
estimation, Multiplicative model; Structural constraint.
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