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ABSTRACT

A service system with batch arrivals and batch services,represented by MiME/L, is

considered. This is a single-server system in which batches of units arrive according
to a Poisson process with rate depending on the number in the system and the batch
sizes are i.i.d. and have a geometric distribution. Similarly, the service process is a
batch service system in which batches depart according to a Poisson process with rate
depending on the number in the system and the batch sizes are independent truncated
geometric variables, We derive the closed-form equilibrium distribution of the number

of units in this M%/Mb5/1 systen.
1. Introduction

A service system with batch arrivals and batch services, represented by M”,,/Mb,/l, is

considered, This is a single-server system in which batches of units arrive according
to a Poisson process with rate depending on the number in the system and the batch

sizes are i.i.d. and have a geometric distribution. The neumonic M?® refers to this

type of process. Similarly, the service process, also represented by M35, is a batch

service system in which batches depart according to a Poisson process with rate
depending on the number in the system and the batch sizes are independent truncated
geometric variables, We derive the equilibrium distribution of the number of units in

this M3/M?%/1 system. One can interpret the MS/M/1 system as a generalized birth
and death process where the births and deaths occur in batches or groups, A special
case is the M"/M/l queueing system( M?® neans compound Poisson with geometric

batches), Other special cases of the Mb,./M',’./l system, which have not been studied
before, are the systems MZ/M/s, Mb/M/®, M5/ M1, Mo/My/1, etc. ( Ma means

state-dependent Poisson Process).

There are several related studies of batch service queues. Bagchi and Templeton(1]
studied the M?/M?®/1/K queueing system which allows at most K units in the system.
They provided a numerical method for evaluating the queue size distribution. Chiamsiri
and Leonard[2] introduced a diffusion approximation for the equilibrium distribution of
the number of units in the single server system with batch-arrival and batch-service.
Powell and Humblet[3] provided a computational procedure for the queue length
distribution and for the moments of the queue length distribution for certain batch
arrival and batch service queues. None of these studies give closed-form equilibrium
distributions,



2. MYM4/1 Queue

Consider a service system in which units arrive in batches and are served in batches
as follows. When there are n units in the system, the time to the next potential batch

arrival is exponentially distributed with rate A,, and the batch size has the
geometric distribution (1-a)a*?, k=1,2~. Also the time to the next potential
departure of a batch is exponentially distributed with rate u,. The number of units

that may depart in a batch has the geometric distribution (1-p)p* !, k=1,2-, and so
when n units are present the actual number that departs in a batch has the truncated
geometric distribution :
- 1-p)p*t k=1,....,n-

g..(k)-— { B(n—IB)B k=};_ Y 1
Let the process {X(¢):t20} represent the number of units in the system at any
time. Under the preceding assumptions, it follows that X is a Markov process with
transition rates :

a(nn+k)

gln,n-k)

X,.(l-a)ak_l
sagn(k) k=1,...n.
To describe the equilibrium distribution, we will use the product

o= 0 Ap-ptaney
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where uo=0.

Theorem 1 If er,, < @, then the equilibrium distribution of the MB/ME/1 process
n=

X is
Do = [(l—aB)uZ_:lr,.]" o
Pn = Dorn(l-aB) n=12...

Our proof of this will use the following property of the pj.

Lemma 1 The probabilities p, in Theorem 1 satisfy

} - -
;_goxkp,‘a" 1k ﬁ-l"—_:T")EL n=12...

Proof : For n=1, the expression is
__(BMtupy
)vopo l-dB
which is equivalent to p1=pori(1-aB), and this is true by (1). Proceeding by
induction, essume the assertion is true for n. Then
n-k = (B)vg"'un)En
,gokxpka ApDnta 1-aB
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The last line follows since

hptayy
=
Rn+1=Pn Bhpe1tBnol

Thus the induction is complete.

Proof of Theorem 1 : The balace equations for the process X are

Moo = Zpwst
(ln"' un)pn = (1-B) k;lpmkllnmﬁk-l"' (1-a) k;ilpn—kxn-kak—l nzl.

Define
S k-1
Sn- k.%lpmﬁ .
The balance equations can be expressed as
Ao = So
i (2)
(Matun)pa = (l—B)B'"S,ﬁ(l—a)gpkkka"""l nx1.

We will now prove (1) by induction. To prove this for n=l1, consider the first two
balance equations
Mpo = So
()"1"'“1)171 (I"B)B_l(So—p1u1)+(1—a)Sn

Solving these for p) yields py=peri(1-af). Thus (1) is true for n=1. Now assume (1)
is true for some n. The (n+l)st balance equation can be written as

(Mner+iar)Pasr = (1-B)B ™" (Sp=Pasattne1p™) +(1-a) Z—:,Pklka""" (3)

f

since Sp+1=Sn—Dn+1ia+1B" From the nth balance equation we know that
(1-8)B™"S; - ()t,,,+un)pn-(1-a)’gpkxkan-k-1'

Substituting this in (3) and arranging terms, we have
[xn+1+Un+1+B_l(1_B)llnu]pn'rl
= B—l(xn"'un)pn"'[a(l"d) ‘B_l (1-0)] gpkxkan—k—l*'(l_a)pnxn

Multiplying this by B and applying Lemma 1 to the last sum, we get

(Bra+1*Has)Pnn1 )
- )R (1-g)] —BratialDn (5
= Otunpn+la(1-a)p- (1-)) B2 B0PL (1 c)gp,p,
Solving this for p, yields
ey Mntaly
Pn+1=Pn Bhpsr*itper
Thus the induction is complete,
Comments on the Proof Although the preceding proof is short, our initial

derivation of p, was rather lengthy. We first conjectured the form of the equilibrium

distribution of the M%/M%/1 system by following steps, The M/M/1 system has the



equilibrium distribution
A
pn=po( )"
and the M./M,/1 system has the equilibrium distribution

We applied the same logic to the M®/M/1 system to guess the form of the equilibrium
distribution of the M",./M,./l system, which is shown on line Z of Table 1. Next, we
noted that if Ag=au+h A=A for all n21 and uz=n for all n=21, then the
M?2/M,/1 system has the equilibrium distribution

pn=po(—°‘%f—)‘—)" (4)

By considering the reversed process, we could get the equilibrium distribution of the
M/M®/1 system (line 3 of Table 1). From this, we could guess the equilibrium
distribution of M/M%/1 system (line 4 of Table 1). Next, we noted that both the
M/M/1 and M/M®/1 systems have equilibrium distributions of the form

Pa=pc”
for some constant c. Similarly, from (4) we guessed that the form of the equilibrium
distribution of the M%/M%/1 system would be

Pn=poc”
if Ap=A for all n21 and p,=p for all n21 and Mo is chosen appropriately. By
considering the reversed process, we could get the equilibrium distribution of the
M®/M®/1 system (line 5 of Table 1), From this we could guess the equilibrium
distribution of the M2%/M%/1 system (line 6 of Table 1). Even this involved a few

wrong guesses, Eventually, we found the distribution and verified it by a long
substitution arguments., Finally, we arrived at the shorter induction proof.

Comments on Examples of the MZ%/M?%/1 Systea

(a) As we mentioned in the introduction, this process X can be interpreted as a
generalized birth and death process where the births and deaths occur in groups.

(b) The M? service process is applicable for modeling "dispatching” or "instantaneous
services” in the following sence. A truck (or computer bus, AGV, dispatcher, etc. )
arrives to the station periodically at times that form a Poisson process with rate ua,.

Upon arriving, the truck instantaneously takes or dispatches a batch of units from the
station. Due to other environmental influences, the capacity of the truck may have the

geometric distribution (1-p)B*1,k=1,2,.... Then the actual number of units that depart
when n are present is the truncated geometric distribution gp.

(c) Although the M",./Mb,./l system refers to 'one' server, it also represent multiple
server systems. For instance, M%/M/s=MYM,/1 with up=pmin{n,s}.

(d) The classical machine repair system [4] has an obvious extension to batch repair in
which the number of machines in repair would be an Mn/M%/1 process with A,=(N-n),

where N is the number of machines each with failure rate X,
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Table 1:

Table of Equilibrium Distributions fro Batch Arrival and Batch

Service Queueing System

System Transition Rates Equilibrium distribution
wepp | Grned) h- Pa=pot(~Bth yot
ginn-1) =u ® u
q(n,n+k) =Xn(1‘d)dk_1 = L auk_1+7tk-1
My/Mo/\ qg(nn-1) =u, Pa pokI-TI Uk
a(nn+1) =) \
M/M"/l q(n'n k) =1 ll(']'» IB)B: 1 e Pn"'PO( BA+H )"
B -
a(n,n+l) =k, . 3
MMy q(nn-k) = | ua(1- B)Bk ' p"=p°kl--l1—l37vt’:+llk
TH
a(nn+k) =A(1-a)a*?
MM | gty = (ML | pempn GRS
LB
a(nn+k) =ha(1-a)a*? .
k-1 =pa(]- TS
Mbn/IWb;/l q(n'n k) - [ u;ﬁll B)B Pn pO(l aB)kI:Il Bxk"'uk
a: if 1<k<n
b: if k=n
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