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Abstract

The Preduction-Transportation: problem, (PTP) is a generalization of the transportation problem. In
{"TP), we decide not only the level of shipment from each source to each sink but also the level of
supply at each source. A concave producticn cost function is associated with the assignment of supplies
to sources. Thus the objective function of (PTP) is the sum of the linear transportation cost and the
production costs. We show that this problem in general is NP-hard and preseit some polynomial
ciasses. Especially, the problem is polynomial when the transportation cost matrix has the Monge pro-
perty and the number of sources is fixed. The algorithm generalizes a polynomial algorithm of [TDG92}
for the problem with two sources.

HKeywords:  Production-Tiansportation Problem, concave minimizution, parameiric linear program-
ming, Monge seguence

It is known that the minimization problem over a polyhedron is polynomial when the
ouiective function is convex [GLS88]. In contrast, many concave minimization problems are
NZ-hard. We consider here a concave minimiration problem over transportation constraints
called th= Production-Transportation. problem, (PTP}. {PTP) is a generziization of the transpor-
taiion probiem. In (PTF), we reed to decide not oniy the level of shipment trom each source to
each sink but also the leve! of supply at each source. A concave production cost function is
asscciated with the assignment of supplies to sources. The objective functicn is the sum of the
linear transportation costs and the concave production costs.

A special class of this problem has been previously studied by Tuy, Dan and Ghannadan
[TDG92]. It was shown that when there are only two sources, the probiem can be reduced to a
problem of finding all breakpoints of a parametric two-source linear transportation problem
with a parametrized supply level. The number of breakpoints of the parametric problem is
bounded by the number of sinks and can be found in strongly polynomial time. For a two-
source problem, this results in a strongly polynomial time algorithm.

We prove here that (PTP) is NP-hard and describe subciasses which are solvable in poly-
nomial time. One polynomial subclass is (PTP) with fixea number of sinks. Another polyno-
mial subclass is the protlem with fixed number of sources and a transportation cost matrix
satisfying the Monge property [Hof63]. The Monge property of a matrix is recognizable in
polynomial time [ACHS89]. Trivial examples of matrices with Monge property are those with
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identical costs in the rows or columns of the transportation cost matrix. With such a matrix the
probiem is soivabie in Jin=ar time even with an arbitrary number of scurces or sinks.

The paper is crganized as follows. Section 1 presents the formulation of (PTP). In Sec-
tion 2, we prove that (PiP) is NP-hard and discuss some polynomial subclasses of (P7P}. Sec-
tion 3 presents a polynomia! algorithm for the problem with a transportation cost matrix satis-
fying Monge property znd ‘a fixed number of sources. Finally, some open problems are
presented in Secticn 4.

1. The Production-Transportation Problem

Consider a transporration problem with a set of sources, {1,..,m} and a set of sioks,
{1,...n }. Let ¢; te the cost of transporting a unit from i to j. The supply allecation (o the
sources are not prescribed but determinéd subject to a concave function g(xj,xa . .., X, ) for
X1, X20es Xu, the vaniablos ropresenting the supply levels at the m sources. The problem is to
allocate che supplies 10 the sources and to send them to the sinks at the ‘minimum total cost.
Thus the Prodiction-Transportation problem,(P7P), which is formulated as follows, is a gen-
eralization of the transportation problem:

L n
P17 min g (X1, X5 . .. X )+ 2, 2,Cij Xij
. i=lj=1
Yxi=x i=l.,m
ixl
EX,I = ;i j = 1....,"
i=1
X, x;20 i=1...m,j=1.,n.

It is reasonable to assume that the marginal cost of production decreases as the produc-
tion level increases. The production cost function g which is concave reflects this cosi
economies of scale. Noie that if the production system is homogeneous for all supply centers,
the cost function g is symmetric.

Let B=b,+b,+ -+ +b, be the total demand. (PTP) is feasible if and cnly if
x;+x,+ - -+ +x, =B and each x; is nonnegative. A nonnegative vector, x € R" is called a feasi-
ble production plen if x,+x,+ - -+ 4x, = B. ‘

Let x',x>e R™ be feasible production plans. Consider the production plan, x*=%(x'+x?).
Ther %> iz also a feasibie praduction plan. MNote that the concavity of g implies that the cost of
the production nlan x* is a; least as much as the sum of the halves of the costs of the produc-
tion plan x' and x°,

It was shown by Tuy et al, [TDG92] that when m =2, (PTP) is solvable in J(x logn)
elementary operations assuming an oracle for function evaluations which provides a single
evaluation as unit operation. In subsequent sections, we show that (PTP) is NP-hard and
present some polynomiai subclasses.

2. The Complexity Status of (PTP)

2.1 (PTP) is NP-hard

We are unable to argue the membership ol (the decision) problem of (PTP) in NP since
g 1is assumcd to be an arbitrary concave funcuion and the input size of g is not well-defined.
We assume a computaiion model with a function evaluation oracle providing a single evalua-
tion as unit operation.

-37-



We demonstrate the NP -hardness of (PTP) by showing that (PTP) is at least as hard as a
known NP-bard problem - the cptimization version of a known NP-compiete decision problem.
As g may be arbitrary, the polynomial reducibility of a'NP-hard problcm to (PTP) needs to be
elaborated vpon. In this paper, we say that an NP-hard problem, (P), is poiynomially reducibie
to (PTP) if,

i)  (P) is formulated as an instance of (PTP), and
ii)  the sum of the input sizes of the numbers in the instance (excluding the concave function
&) is polynomially bounded in the input size of (P).

According to this definition, we prove that (PTP) is NP-hard by showmg that the optimi-
zation problem SET COVER (See MINIMUM COVER of [GJ79]) is pols vnomially reducible
to (FTP).

SET COVER _
(iiven a collecticn K = {\‘l,sn, w. ., Sy} of subsets of a finite set § ={1,2,...,n}. Find a subcol-

lection X of K of a minitnum number of subsets such that the union of the subsets in K” is
equal to S.

For a minimmm cover X’ of S, define a map from § to X’ which associates a set
S@)e K with each elemeat j of S so that j e S(l) Such map exists since K’ is a cover. Also
the map is onto since otherwise the cover is not minimum.

SET COVER can be viewed as the problem of associating with each element je £ a
subset S(j) confaining j so that the total number of the subsets utilized in the association is
minimum.

Theorem 2.1: (PTP) is NP -hard.
Proof: We show thai SCT COVER is polynomially reducible to (PTP).
Fori=1,2,..,m and j=1,2,.,n, let
{1 if 5;=5(j)
% =o otherwise.
Since each elemcrt ic asseciated with exactly one set, i x;=1foreach j=1,.,n

im}

Consider (PTP) with transportation costs

0 ifjeS;
Gi=|m otherwise,
for M a constant greater than 1/n and a concave production cost function,
8(xpxy .. X )=+ D+ (x+ 1) 4+ - - (x, + 1),
The (PTP) problem formulation with these costs will be shown to solve SET COVER:
(P2.1) min (x;+ D" +(xp+ D" 4 - w(x, + D)+ T M x;;

iJ st
J nomem S;

Z Xij =X; i=1,..,m
j=

m

inj=l j=l....,ﬂ
i=1

x,-j 20 i =1,...,m, j = :,...,I‘l.

Due to the concavizy cf the objective function an optimal solution of (F2.1) is attained at
a vertex where each x; is O or 1. Furthermore, we show that given any optimal solution, an
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optimal basic feasible solution can be constructed in strongly polynomial time. It follows that
the integraiity constraints for x;; may be omitted in {F2.1).

Let X=(X1,%% . . ., %iX1: %12 - - - » Xny) be an optimal solution of (P2.1).
Claim 1: x;; >0 ounly if ¢; =0.

Proof. Assume the contrary: there exists a pair 1Sp=<m and 1<g <n such that ¥,, >0 and
pg =M. Since SET CCVER s Yeasible, there is isp' m such that c,,, =0. Consider the solu-
uon % obuained from X by ncdifying the vaiues of x,, and x,, as follows:

_)_",,q 0 and x,; Xy, + X,

Since x,, 1s iucreused by X, x, 1S also increased by X,,. Since (x, +1)!" is strictly con-
P'q Y Xogs Xp pq - P
cave, the incrcase in the obiective function due to the increase in Xpq is less than,

1-n 1
o 1=
o *t1) " Xy S e

(4

(

i3

1—3

where —-(x +1) ™ is the derivative of (x, +1)'" at x, =X,

On the other band, the decrease in the objective function due to the dec'casmo of &, is
greater than M x,,. Thus the nzt change of the objective value is less than (—- -M)x,,.

Since M >1/n the new solution & has objective function value less than that of x. This
contradicis the optimelity of % fcr (P2.7). Thus we conclude that I;; >0 only if ¢; =0. O
Claim 2: & is integec for every i =1,...,m

Proof: Supp«)ﬁc there is 1<) < cuch that %, is not an irte.22r. Then there exists an 1<s<n
such thai 5, is a fiacion. Tlhis implies that there is an 1 <7 < r #r such that X, is a {rac-
tion.

Assume that %, <%,. Consider the feasible solution x’ obtained by setting x’,, =0 and
X=X, +3,,.

Since the separable terms for x, and x, in the concave function g are identical and
strictly concave, the assu'nptjo'n, ¥, <%, implies that the objective function value of the new
solution: x” is less than the that of the optimal solution X. A contradiction.

S.m;lar.y, when X, €%, ave can derive a contradiction by showing that decreasing «,; to

zero and increasing x., from % to %, +X%, decreases the objective value. Hence X is an
integer for every i =1i,...,m. O

Consider the following transportation problem

F22y mn Y M Xij
iJj st
J nomem S;
n
Ex,‘j =.:A.',' i =:l,....m
Jj=1

Zx;,-=1 j=l,...,n
i=l

x;20 i=l..m,j=1..n

(X11,%12, . . ., % ) is a feasible solution of (P2.2). Furthermore it is an optimal solution
from Claim 1.

Let (x1;,%12, ..., Xn ) be an integer optimal feasible solution of (P2.2) which can be
obtained in polynomial time by using, for example, the minimum cost flow algorithm of
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[Orlin93). x,; is 0 or 1 since %, are integers by Claim 2. x" and ¥ have the same objective
value for (P2.1) since x;"=%; for every i =1,..,m and the value of the linear cost term is zero
for both soiutions. ,

Thus (X1,X2, ..., Xm*X11.X12, . - . » Xms ) is an optimal basic feasible solution of (P2.1)
and we may omit the integer constraints in (P2.1).

From Claim 1 an integer optimal feasible solution of (P2.1) is a feasible solution of SET
COVER. It is now shown that an integer optimal solution of (P2.1) is also an optimal solution
of SET COVER. We prove that g is a strictly monotonic increasing function of the size of a
cover. The size of a cover is equal to the number of positive (integer) eiements in
(X)X2 o ooy Xy )e

Lemma 2.2: Let p be an integer satisfying 0<p <min{m,n }. Let (x,,x3 . ... x, ) be a feasi-
ble solution of (P2.1) with p positive elements and let (x"},1",, .. ., 1, ) be a feasible solution
of (P2.1) with p+1 positive elements. Then,

(xl+l)l/u+(x2+1)lln+ U +(Xm+l)”" <(x/l+l)l/n +(x'2+l)lln+ . +(X'm+l)“n-

Proof: Consider the following two problems:

(P23) P = max (yl+l)lln +(y2+1)l/n 4 - +(,"',: +1)i/n
Yitya+ - 4y, =n
yi 21integer i =1,...,p

(P2.4) Q=min (y,+ D" +(ya+ 1) + - - - (3, +1)"
YitYat oo AV =n
y: 21 integer i =1,..,p+1.
The vector consisting of the positive elements of (x;,~, ..., x,) is feasible for (P2.3).
Herce,
(+D" 4+ D"+ - 1 (5, + 1) <P
Sitilarly,
(4D (v 1) 4 - (i, + DY 2 0.

3o the lemma will follow if we prove that P <Q.

Since (P2.3) is symmetric with respect to its variables and the objective is concave, the
optimal solution to the relaxed problem has all variables equal to n/p. Therefore,

PSp(l+1)"".
P

(P24) is also symmetric but it involves minimization. Hence the optimal solution of the
continuous version of (P2.4) is achieved at any vertex, i.e., any solution vector with p 1's and
a single n—p as its entry. Thus,

Q2p2" +(n—p+ 1),
To show P <@, it suffices to prove
p (%H i < p 2 4 (n—p +1)17,
or, equivalently,

(» (%*1 WY < (p 2" +(n—p +1)!" ). (2.2.1)
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Using the equality
(p (ﬁ,)l/n )n =pn _‘_npn-l'
. p
it follows that
(p 2|/n +(” -p +1 )l/n )n
=2p" +[n,ll] pri2e VR (p—p 1)V 4 - +['l1]p 2% (n—p + 1)V 4 (n —p +1).
> p" +["'11] pn—l o{a=1yn (n-p+1 )lln =p" +n !)n-—l on=1yn (n-p +1)1/n.
Sincen -p +1>1,
pn +npn—l 2(n-l)ln (n -p+ 1 )lm an +n P"_l-

Hence (2.2:1) foliows and the proofs of Lemma 2.2 and hence of Theorem 2.1 are complete. O

The reduction from SET COVER implies that (P7P) is NP-hard even v/hen g is separ-
abie and symmaetric. : -

2.2 Two Potynomial Classes of (PTP)
2.2.1 (PTP; with a fixed number of sinks

n N
By substituting x; = 3’ x;; in the function g, (PTP) can be written as follows:

j=1
L n

min g(x“+x,2+...+xl,,, C e ey x,,,l+x,,,3+,..-‘-xl ,,,)+ Z ZC"J‘ x;j

m HORE |

inj =bj j =1....,I‘l

i=1

x;20i=1..m, j=1l.,n.

n

Since g(x,,xy ..., X, ) is a concave function and x; = >, x; is a linear function, g is a

j=1
concave furction of (x;}. Hence an optimal solution is attained at a vertex of the polyhedron
of the fzasible solution set. Such optimal solution is of the form,

% =o if i #i;

There are O(m") possible optimal solutions. Thus enumerating all of them is done in
strongly polynomial time if the number of sinks n is fixed.

for some i; for j=1,.,n.

2.2.2 (PTP) with identical costs in rows or columns

Consider (PTP) with a transportation cost matrix in which the costs are identical in each
row. That is, for each i =1,2,...,m, there is a constant ¢ such that ¢;; =¢; for all j=1,2,.,n.

m
The objective function is written as g(x ). X . ... X, )+ 2, ¢; x;, which is concave with respect

i=]
0 (x;.X2...%,). An optimal solution is attained at a vertex of the polyhedron and is of the
form,

» B(=bl+b2+'-. +hn) if i =i
*i=lo TRt
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for some 1<i’<m. An optimal solution is derived by evaluating the function values for
I =1,2,..m and ciioosing an index i’ giving the smaliest value.

A similar observation applies when the costs are identical along each column. Namely,

for each j=1,2,...,n, thare is a constant ¢ such that ¢;; =¢; forall i =1,2,...,m. In this case the
n n

linear cost term is the censtant, ¥ ¢; (Y x;) = Y, c; b; and hence the objective function is
j=1 i=1 j=1

again concave in (xy,x,,...,x,). The optimal solution is again of the form (*) and can be deter-

mined by comparing the function values for # =1,2,..,m and choosing an index yielding the

smallest value.

A special case the above polynomial class is when all c;; are identical, ¢;=c for
i=1,.,m, j=i,...n.In {nis case the linear term becomes a constant and can be delcied from
the objective function. So without a linear term in the objective function the problem is easily
soived. Thus the linear term in the cbjective function appears to be a factor making this prob-
lem hard. ' '

3. A Strongly Polynomial Algorithm for (PTP) with Monge Cost
Matrix and Fixed Number of Sources

In this section, we show that’if the cost matrix (c;) has _Monge property and m is fixed,
(PTP) is solvable in strongly polynomial time.

We show first that (PTP) is solvable by enumerating the breakpoints of a multi-
parametric transportation in Subsection 3.1. Subsection 3.2 includes a discussion and definition
of Monge property. In Subsectiori 3.3, we show that the breakpoints of the multi-parametric
transportation defined in Subsection 3.1, can be enumerated in strongly polynomial time if the
cost matrix has Monge property and m is fixed.

The approach nere could be viewed as a generalization of the approach in [TDG92] for
m =2, as matrices with only two rows (or two cclumns) always satisfy the Monge property
(see e.g. [ACHS89]).

3.1 A Parametric Problem

Ccnsider the following parametric transportation problem,

(TP () z(a)= min EZC_:j.\T,'j
i=1j=1
Y= i=1.,m

x;j20i=1...m,j=1,..n,

where each «; is nonnegative and o+ - - - +a,, =B (where, B=b,+ - - - +b,).

It is known that on the domain D={o0:0;20 for i=1,2,..,m, a+ - +o, =B}, the
opiimal vaiue of (TP(a), z(a), is a piecewise affine function (see e.g. [Murty83]). D is the
union ui disjoint polyhedral sub-domains, D, D,,..., D, so that z(a) is linear on eaci of the
sub-domaics.

Let w(a)=g(w)+z(o) (where g is the corcave cost production function of (PTP)). Then
the optimal value of (P7P) is equal to

minw(e)= min min w(a). 3.1)
aeD k=1, . A ae D,
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Note that D and its sub-domains D; are (bounded) polytopes. Hence there is a finite set
of points of D, L ={a',a’,...,aN } such that each sub-domain D, is the convex hull of a subset
L, of L. Each element of L is called a breakpoint of the parametric transportation problem,
(TP {x)).

Notice that w(a) is a concave function on each D; since z(a) is affine on each D,. So

mxg w(a) can be de'crrmned by evaluating function values of w(a) at the breakpoints ae L,
ae Dy

and choosing a breakpoint giving the smallest value. From (3.1), the optiimal objective func-
tion value of (PTP) is cbtained by evaluating funcrion values of w(a) at all the breakpoints of
L and choosing a breakpoint giving the smallest value.

Thus, to solve (PTP), it suffices to find all breakpoints and the corresponding solution of
(TP (a)).

The parametric approach does not necessarily lead to an algorithm for the problem, unless
it is known how to find ali the breakpoints. Tuy et al [TDG92] showed that for m =2, (TP(a))
has at most n +1 breakpaints that can be found in O(n logn ) elementary operations. As dis-
cussed in Subsection 2.1, (PTP) has 2" vertices when m =2. Thus the parametric approach
represents a substantial 'mprovcment

Although it is not explicitly observed in [TDG92], the reason for this efficiency is that
every 2xn cost matrix has Monge propcrty [ACHS89] which is discussed in the following
subsection.

Remark: In [TDG92], for m =2 the parametric transportation problem is derived in the context
of rank 2 condition. It is also possible to derive (TP(a)) using rank m condition which is a
straightforward generalization of rank 2 condition. Using rank m condition, we can show that a
more general class of concave minimization problem can be reduced into the problem
enumerating the breakpoints of a parametric linear problem.

3.2. The Monge Property

Consider the transportation problem, (7P) defined with the cost matrix C C=(c; )
(7P) min Y, 3¢ x;
ixlj=1
n
Yxj=a; i=1l..,m

vyl
m

— .
Lx,-j = i 1= l,....l‘l
i=1

X,'j 20 i=l,....m.j=|.....n.

C is said to have Monge property [Hof63] if there exists a permutation
(G ji)hGasja) - ooy GusJmn) ) OF indices of the cost matrix such that,

(M) for every 1<ik<m, 1<j,/<n, whenever (i,j) precedes both (i,!) and (k,j), the
corresponding entries in matrix C are such that ¢;; +cy <S¢y +¢y.

Any permutation satisfying (M) is called a Monge sequence. If C has a Monge property
(and hencc admits a Monge sequence), for any nonnegative integers, a,,..., a,, by;..., b, (with

Y oa= Z b;), (TP) is solved efficiently by a greedy algorithm. The following theorem is due

i=]

to Hoffman [Hof63].

Theorem 3.1: A permutation ((i, j;),(i2.ja). - . .. Gun»Jjmn)) is @ Monge sequence of C if and

only if for any nonnegative integers, a,,.., a,, bi,..., b, with 3 a;= Y b;, the solution
i=1 j=1
obtained by Algorithm Greedy (in Figure 1) is an optimal solution of 7P. !



Algorithm Greedy

begin
u; « a; fori=1,...,m; v & bj forj=1,....m;
forp=1tok do
begin
X & min (u;‘ Vik);

U‘k -« u,k x'kh

Yie © % Rde
end; {for}
end;

Figure 1: Algorithm Greedy
The Monge property can be characterized in polynomial time. The algorithm of

[ACHS9] tesis whether an m x7 matrix has a Monge sequence in O (m?n logn ).

Every 2xn matrix, C has a Monge sequence: renumber the columns of the matrix so that
Cl-€nSC—Cns.SC—Ca,. Then ((1,1),(1,2),.,(1,n)(2,1),(2,2),.,2,n)) is a Monge
sequence as easily checked. The parametric transportation problem for m =2 is,

(TP (B)) min 2 Zcu x;;

i=1lj=
i =B

=bj j=1..,n

MN" M!
e

"
—

i

x;20i=12,j=1,..,n,
for 0<B<B (only a single parameter is required by deleting a redundant constraint).

Theorem 3.2: ({TDG92)) (i) The breakpoints of the optimal value function in (TP,(P)) are in
the set, {B%B%....p" ), where

BO_ Bk+l_ﬁk+bk k_o 1’ . n-1.
G It Z <PB< Z b; (with by=0) for some 0<! <n-1, then the follow.ng solution is optimal
j =0
for (7. Pz(ﬁ))

Xn=by,xn =0 ;X1 =01 X00=0;
1-1 I
—_— — . = hH. _R-
xy= Zb]vle—zjj B;
j=0 j=0
X1ua=0Xyn=bra; .5 X1,=0,X9, =b,.

The algorithm presented in the following subsection reduces a parametric problem into a
two-row problem. We then use the algorithm implied by Theorem 3.2 to solve the two-row
problem.

3.3. An Algorithm

Consider Algorithm PTP presented in-Figure 2. It consists of three main parts: initializa-
tion (line 1-3), breakpoint enumeration for (7P (x)) (line 4) which is done by the procedure
Breakpoint-Finder described in Figure 3, and optimization (line 5-6) which sclects a break-
point and a corresponding solution yielding the siaallest objective value.

From the arguments of Subsection 3.1 the validity of the algorithm PTP immediately fol-
lows from the validity of the procedure Breakpoint-Finder.



Algorithm PTP

begin

seti={12, ... mjandJ={(1.2,...,n}
Q {220, 0,20, . . .0, 120, ot 40+ . . 4o (B}
setu= o; fori=1,..,m-1, uy, = B - (oy+op+ . . 40ty ) and v]-=b’- forj=1,....n;

call Procedure Breakpoint-Finder (l.J);

evaluate the objective function value for the solution
corresponding 1o each breakpoint;
choose a solution of minimum value as an optimal solution of (PTP);

end;

Figure 2: Algorithm PTP

Procedure Breakpoint-Finder(l,J)

end; {Procedure}

begin
if it > 2 then do
begin
1 select the cell (i,j) such thatie andje J, whichis
at the top of the Monge sequence;
{row deletion}
2 letxii=ui;0<-—0u{uisvi I3
3 I(—l—{i};vie-vj-ui;
4 delete the cells in the row i from the Monge sequence;
5 call Procedure Breakpoint-Finder {i..}};
fcolumn deletion}
6 Letxij=vj;0<—-0u(vjsui I
7 Jed-fibiy e y-v;
8 delete the cells in the column j from the Monge sequence;
9 cail Prtocedure Breakpoint-Finder (1,J);
end; {if}
Else, then do
begin {sotving two row problem}
10 sayl={1,2}andJ={1,2,..,K}: —
11 sort { Cy4-Cpy, €19-Ca3,..-.CqCay } iN an increasing order and
let the sorted sequence be { y; -Cy; . C1j,<Cgj, ---:C1j, Cj, }s
forp=1tok do
begin
12 set Xyj = Vajo Xgj, =00 o0 Xqj_ =Vyj o X2l ,=0> X4j=Us - Tos<pt Vi
x2ip=2q <p viq ~uy, x,iM=0, xZiM=va, s xm:o, Xo) =Yy
13 Qe-Qu{Zgep Vg SUp Urs Zq<pYih where v, is defined to
be zero;
{calculation of breakpoints}
14 solve every subset of m-1 equations of Q;
15 accept a solution (aty,00, . . .0y, ¢) as a breakpoints only if
it satisfies 0,20 for all i and oy +op+ . . 4o, (S B;
16 return the accepted breakpoints and the
corresponding solution {x ij};
end; {for}
end; {else)

Figure 3: Procedure Breakpoint-Finder
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The procedure Breakpoint-Finder applies the greedy algorithm to the parametric prob-
lem (TP(a)) using the Monge sequence. At each iteration, the greedy algorithm needs to be
combined with branching step to enumerate the possible outcomes of optimal solution as the
right hand side are parametrized in ierms of a.

At each branching step, the current problem branches into two sub-problems with smaller
dimensions. This branching is recursively repeated until the current problem has only two
rows. Then the two-row parametric problem is solved using Theorem 3.1.

Theorem 3.3: Procedure Breakpoint-Finder correctly returns all the breakpoints of (TP (w)).
Proof: At each iteration the procedure considers the cell (i,; ) of the current problem, which is

at the head of the Monge sequence (line 1). Initially, the original parametric problem, (TP (c))
is the current problem. By Theorem 3.1, the greedy optimal solution is such that,

fui ifu; <v;

Vi

(3.3.1)

xij = if U; 2 Vj.
Thus we need to consider two cases, u; Sv; and u; 2v;. When 4; Sv;, we assign u; to the cell
(i,j ) and the equation u; <v; is added 1o Q to specify the sub-domains on which the assign-
ment is optimal (line 2).

Also if 4 <v;, all other cells than (i,;) of the row i will not be assigned any positive
shipment in the greedy. solution. Hence the row i is deleted from further consideration and the
demand level of the column j needs to be decreased to v; —u; (line 3). Accordingly all the cells
of the row i are deleted from the Monge sequence (line 4).

Line 6 - 8 describe the similar procedure for the case, 4 2v;.

Thus after the branching step, the current problem branches into two sub-problems; the
one with reduced rows and the other with reduced columns. For each sub-problem, the branch-
ing is recursively repeated if the number of rows is >2 (line 5 and 9).

Note that u; and v; are the affine functions of . Initizily u; =a; and v; =b;. By induction
it is easy to see that at each iteraticn, U =(Pj X +Pial+ -+, &, )—p;o  and
Vj =Cjo=(0;10; +G;30,+ - - - +0}, 0, ), where p, and C;; are nonnegative integers for k, /
=0,...,m.

So the linear equation, g =v; defines a hyperplane which divides the domain
D={a:q;20fori=1,2,...,m-1, o4+ - - - +a,_,<B} into two polyhedral sub-domains. Clearly
on each sub-domain the greedy solution of x; defined in (3.3.1) is an affine function of a.
Hence the cost contribution of the grecdy solution of x;; to the objective value z(a) is also an
affine function of & on each sub-domain. Thus by induction on (he number of iterations, it fol-
lows that the cost of the currently assigned shipment levels (x;'s with (i,j) € IxJ) is an
affine function of (o, 0, ...,a,_;) in the current sub-domain defined by the equations in Q.

So far we have shown that at each branching iteration, the procedure assigns the ship-
ment level to an additional cell in optimal manner and generates equations of (a,,a,,...,0,,_;)
so that the equations in Q describe a sub-domain on which the cost of the currently assigned
shipment levels is an affine function.

This branching is repeated until we get a two-row problem (line 10). Then we can find
the optimal parametric solution using Theorem 3.2. The solution (line 12) and the equations
describing corresponding ranges added to Q (line 13) are obtained from Theorem 3.2 (ii) by
simply substituting n =k, B=u,, and b, =v, for I =1, k. If there are k columns in the problem,
there are k correspending ranges. Clearly, in each of the ranges the cost incurred by the ship-
ment levels assigned to the cells in the two-row problem is an affine function of the
(alv a’z:---vam—l)-

After line 12, we obtain a complete solution {xjli=l..m,j=1..,n} of (TP(a)). The
equations in Q after the execution of line 13 describe a correspending sub-domain on which
the objective function value z(a) is an affine function.



at most "’t'l'J vertices (breakpoints of (TPa))) which can be found by solving every subset of

m equations of Q as in line 14. In line 15, we choose only the solutions which satisfies the
valid conditions, namely, each q; is nonnegative and o, + - - - +aq,,_, <B.

Thus the procedure Breakpoint-Finder correctly generates the complete set of break-
points of (TP (m)) and the corresponding solutions. The theorem follows. O

From Subsection 3.1 and Theorem 3.3, we have the following corollary.

Not: that the total number of equations in Q is at most m +n. Thus each sub-domain has

Corollary 3.4: Algorithm PTP is valid.
Now we show that Algorithm PTP is strongly polynomial.

Theorem 3.5: The complexity of PTP is O(n®"~2) if we assume a function evaluation oracle
providing a single evaluation as unit operation.

Proof: The initialization (line 1 - 3) of the algorithm can be done in O(n) steps as can be
easily checked. The number of unit operations required for the optimization (line 5-6) is linear
in the number of breakpoints generated in the procedure Breakpoint-Finder: the number of
function evaluations (line 5) is the same as the number of breakpoints and the minimum value
of line 6 can be found in linear time in the number of function values by using the algorithm
in {BFPRT72].

The number of breakpoints generated in the procedure ~Breakpoint-Finder is bounded by
the number of clementary arithmetic operations executed by Breakpoint-Finder.

So to prove the theorem, it suffices to show that the running time of Breakpoint-Finder
is O(n¥"-2),

iet T(m,n) be the number of elementary operations taken by the procedure
Breakpoint-Finder when a parametric problem has m rows and n columns. Then by the
recursive structure of the procedure, we have,

T(m,n)ST(m-1,n)+T(m,n—-1). (3.3.2)

First we show that the number of elementary operations required to solve two-row ‘problem is
T(2,n)=0(n™). The sorting in line 11 can be done in O(nlogn ) steps. For each p=1,.k,
line 12 to 13 can be done in O(n) steps. The operations of line 14 and 15 can be done in
O(n™') steps since, as thown in the proof of Theorem 3.3, when m is fixed, the total number
of the sets of equations to be solved is O(n™"!). Each set of equations is solvable in O(m?)
which is a constant as m is fixed.

Thus for each p =1,...k, it takes O(n""") steps and hence T(2.n)=0(n™ ) as k <n.

Now assume inductively that for every k=2,.,m-1, T(k,n)=0(n"**~?). Then by
(3.3.2) there is a constant A such that,

T(m,n)ST(m=l,n)+T(m,n-1)
SAnY 344 (n-1)"2
=An* 2 (Un +[(n =1)nP"-?)
SAn*™ Y Un+(n-1)n)
=An-?
So the theorem follows. O3

Remark: A careful look at the algorithm and its complexity analysis indicates that we may
assume.a weaker form of oracle. The function evaluations are required solely to find a solution
yielding the smallest objective value. However a smallest valued solution can be found
without calculating function values explicitly if only we can determine the ordinal sizes of the
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 function values of given solutions used in comparisons (see e.g. [BFPRT72]). Thus it suffices
to assume an oracle to determine the relative size of the function values (rather than calculating
the explicit function values) of given solutions.

4. Open Problems

An immediate open question is on the polynomiality of (PTP) when the number of
sources is fixed with a cost matrix that does not necessarily have the Monge property. A
related question is: how many breakpoints does the parametric transportation problem (TP (ca.))
have when the number of sources is fixed? If the number of breakpoints is exponential in n,
the approach using the parametric transportation problem can no longer provide an efficient
method to solve (PTP) even when the number of sources is fixed.

It is also an interesting problem to improve the polynomial algorithm presented in this
paper. For example, is it possible to find a O(n ) algorithms for the cases discussed in Subec-
tion 2.2 and Seciion 3?

A further research in somewhat different direction is to develop an efficient heuristic for
the general case. No such method is known even if we make some additional assumptions on
the concave production cost function such as symmetry and separability.
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