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Abstract This paper presentls a method Lo calenlate
the characleristic root areas and loci band of control
sysletus willh uncertainties. [irsl, equations of bound-
ary curves of rool areas in the case of additive and
mltiphicative perturbation are derived. Then, an al-
gorithm for the calulation of the array of closed curves
is presented.  When the upper bound of the absolute
values of [tequency responses for the uncerlain part
is also frequency-dependent, the frequency-dependent,
terins are included in the characteristic equation of the
nominal system. This lead to the boundary equations
of the root areas for coulrol systems with [frequency-
dependent uncertainty. Numerical examples of thie con-
brol systems with iultiplicative perturbations including
[recquency-dependent. terins are presented Lo verify this
calculation method. Finally, its applications to the de-
sigh of rtobust control systeins, e.g., passive adaptive con-
trol systems are also discussed. )

1  Introduction

In this paper, we present a miethod to calculale the char-
acleristic rool arca and ils array, ie., rool loci band
of control systems with plant uncertainties. First, the
method of calculating the characteristic root arcas for
additive and nmitiplicative perturbations is discussed.
If the upper bound of the absolite values of frequency
responses for the uncertain part is given, the equation of
the boundary enrves can be derived, and an algorithm
for the numerical calenlation of the array of closed curves
can be presented.

A little adpnstment is perforined belween the nominal
systemn and Lhe uncertain part particntarly in the case
ol multiplicative perturbation, so that the characteristic
root. area 1s nol loo large, or in other word, boundary
curves are nok loo conservabive. When the upper bound
of the absolute values of frequency responses for Lhe un-
certain parl is also frequency-dependent, the frequency-
dependent tenins are included in the characleristic equa-
tion of the nominal system.

A simple design example of robust control, ie., pas-

sive adaptive control system by using model reference is
presented as an application of the root loci band.
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Fig.l Feedback control system with uncertainties.
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2 Root Loci Band for Control
Systems with Uncertainties

2.1 Additive Perturbation

A control system with addilive perturbation, c.g., inter-
connection Lo the other loops is cousidered as shown in
Fig.1. The open loop transfer function from the view-
point. of P is given hy

AG(s)KC(s)

M) = e ()

where (7, ', and K is plant, compensator and gain
parameler respectively. Obviously, the robust stability
condition can be written as

L{slew < 1. (2)
if the upper bound of the absolute values of frequency

responses for the uncertain part is giveu by a [unction
of real frequency w as

|AGGw) < lpaiw)l )
then Tq.(2) is arranged by

[Faliw)] > |pa(iw)l - )
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Where

F _ 1+ KC(s)G(s) _ Na(s)
A O
and any zevo of Bq.(H) lies in the lelt-hall s plane.

The robust stability condition Eq.(4) contains all
properiies of such control systems for cownplex frequen-
cies 5. However, il is more convenient Lo sce how the
array of bhonndary curvesl1], which is refered to as the
rool loct band in this paper, varies with incrcasing gain
I, So a method to calculate the array of the curves is
mentioned below,

Thelocus of azero s; (i = 1,2, -+, n) ol the following
cquation,

Fa(s, K) =0 and  |Na(s, ) =0  (6)

for X : 0 — oo is obviously a root locus, whereas for
some positive consltant g, the array of closed curves sal-
islying

[FFa(s, KO = pa > lpa(s)], 1=1,2,-,00  (7)

shows Lthe boundary curves ol the arca containing chacac-
leristic rools of control systems. "This inequality Bq.(7)
corresponds Lo Rouché’s theorent? . Though Lhe right-
side inequality of Bq.(7) should be also satisfied, the con-
sideration of the inequality will be discussed later.

2.2 Multiplicative Perturbation

When the uncertain part in Fig.l is represented by
AG(s) = A(s)G(s), it is possible to discuss control sys-
tetus with mltiplicative perturbation in Lhe same way as
those with addilve perturbation. The open loop Lransfer
funclion from the view-point of P is given by

A(s) K G(5)C(s)

M) = TRt a) Y

IT the upper hound of the absolute values of frequency
responses for the wncertain part is given by a function
of real frequency w as

|A(7W)I < |f’m(jw), ’ (0)
then 5q.(2) 1s arranged by

|Fm(jw)| > lPrll (7“’)' . (10)
Where

-+ ](’C’(S)(}(S) . /\’,"(5)

Fou(s) = KC(s) - D (s) ()

and any zero of Eq.(L1) lies in the left-half s plane.

In order to avoid conservaliveness, a little adjustment.
is perforimed between the nominal system aud the uncer-
tain part particularly when dealing with mulliplicative
pertiurbation. I the parmineter 7 of uncertainty varies

from 0 to max, the modilying terin by which to multiply
the nominal system is as {ollowsl?]

n A(S,O) + A(sy Tm:\x)

Dn(ﬁyrnmx) =1 D) . (I’Z)

Therefore, the modified term A(s) of uncertaiuty can be
written as

_ A(S,O) - A(s. Tmax) (13)
2+ A(5,0) + A(S, Tinax)

A (5| Tm:\x)

3 Algorithm Obtaining Bound-
aries of Root Areas

3.1 Boundary Curves

The equation of the boundary curves corresponding to
Eq.(7), in other words, root conlours 17, is generally
represented by

How, Ky = [F(s, )l = 5, 1= 1,2, 00, (14)

Roots s = (7,w) of this equation are oblained sequen-
tially by using Newton’s algorithin together with the
gradient method in the complex plane. Note that any
boundary curve of q.(11) is a simple closed curve, i.e.,
a Jordan curve.

If it is necessary to confirm the validity of the in-
equality on the right side of Eq.(13), the equation of the
boundary eurve '

glo,w, K)) = |p(s)|—p, =12, ,c0 (15)

can bhe calculated for the confirmation.
The algorithm obtaining the closed houndary curves
represented by Fq.(14) will be shown in several calcu-

lation steps. A course of computalion is illustrated in
IFig.2.

w

S1

Sg

~2 -1 0

Iig.2 A root contour and its calculation.

3.2 TFrequency-dependent Uncertainty

When the upper bound of the absolute values of fre-
quency responses for the uuncertain part is frequency-
dependent, the frequency-dependent terins such as the
right side of Eq.(10) can be included on the left side
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of the equality. 1T the frequency-dependent ‘radins’ is
given by

pls) =c¢ l),.(:ﬁ)' € 1 const., (16)
Lhen the characteristic functions Eqs.(5) and (11) arc as
lolows:
" N(s) Dy(s)
" (5) = : . 17
=55 N, (s) (17)

Thus, the tnequality corresponding to Fq.(7) ts
(s, K =p" > ||, I=12, -, c0, (18)
and Faq.(14) is modified as the following cquation:
Jlo,w, 1K) = | (s, KD -p" =0, 1=1,2,-- -, 0. (19)

In later examples, we will use Eq.(19) as the equation of
the root contours.

3.3 Algorithin

The algorthm for the calenlation of Eqs.(14) and (15) is
as follows([2] :

(1) Leli:=1, [:=1 be the initial selting.

(2) Calculate rool locns according to Eq.(6) from J{ =
Koy (I = 1,2,--) to the appropriate gain I = I, by
using the two-dimensional Newton method. (10 Eq.(14)
is used, let 5 = 0 ). When calculating the root locus, it
is necessary Lo pay close alttention to the vicinity of the
points where rools are breakaway from real quantities
to complex ones, or break-in from complex quantitics
to real onest™, ie., multiple rools, a node or a saddle
point in Eq.(14). However, the method to calculate such
points is not discussed here in detail.

" (3) Proceed from Lhe toot p;; of the noininal system
for I{ = I{; to a ditection of zero argument, and then
calculate root  sq = (0g,wq) of Eq.(11) by using the
Newlon method.

(4) TProceed from the point sy to the tangential direc-
tion (the orthogonal direction to VI } and at this time
proceed from the point sy to the direction of =V F, And
then calculate root. s = (o,w) of Eq.(14) by using the
Newton method.

(5) Repeal step(3) until returning the vicinity of point

Sp.-

(6) Let!:=141 andrepeat from step(l) until X =
I max 15 satisfied.

(7) Letl:=1[{+1 andrepecat from step(1) until i=n
is salisfied.

4 Numerical Examples

4.1 TFirst-order Lag Uncertainty

Example 1 As an exaunle, cousider a control system as
shown in Fig.l where plant and compensator are given

by «
1 I +0.5s
G(s)= ———, C(5)= —7.
() s(1+5) (%) = 02
Suppose the plant uncertainties for multiplicative per-
lurbation are first-order lag and defined as

(20)

D(s,r)=1+A4A= {]

s ()grgr,,m}. (21)

The modifying term Bq.(12) is

- 1+ (Tm:\x/2)

I T '”"(\ e 2')1
)Y (9|7 X) bt Tinax S ( )
and the modified term of uncertainty Eq.(13) is
na 2)¢
A (s, Tinx) = (Timax/2)s (23)

1 4' (r)r|nx/2)5 '

In case of Tnax = 0.4, the array of the boundary curves,
i.e., toot loci band is shown in Fig.3.
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Fig.3 Root loci band of a control system with
first-order lag uncertainty.

4.2 Transport Lag Uncertainty

Example 2 Consider transport lag uncertainty flor

nltiplicative perturbation, that is,
D(.?,T):lflvA: {Ch” iUSTSTm:\x}‘ (24)

Suppose plant and compensator are Lhe snune as those in
Example 1. For max = 0.4, the array of the boundary
curves, 1.e., root loci band of dominant poles is shown in

Fig.4.
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Fig.A Root. loci band of a control system with transport
lag uncertainty.
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5 Applications to Robust Con-
trol System Design

The block diagram of inodel-referenced passive adaptive
control system is as shown in Fig.5. Where G(s), Gom(s),
C/(s) and K is plant, plant model, compensator and gain
paramicter respectively. And H(s) is some class of feed-
hack compensators determined by the inverse function
of Gyn(s). Note that G,,(s) should be selected for the
nominal plant, G(s).

It is well known that this Lype of control systen is
low-sensitive and robust lo disturbances and/or plant
uncertainties(*,

----- §06(s) by
+ + uE Al wt Y

r —AQ‘; KC(s) S G(s) ?o

ig.5 Model-referenced passive adaplive control system.

Example 3 When the uncertainties for multiplicative
perturbalion are first-order lag and defined as Eq.(21),
D(s, ) is modified as follows:

(24 7s)(1 + 7.5)
(T4 7s)(1 4 r8) + 1

D(S,T):{ OSTSTmax} y

(25)

of (71n(s). As assumed in Example 1, plant is given by
G(s) = ————
®) =

is, C(s)=L. For mpax = 0.4, the array of the bonndary
curves, i.c., root loci band of dominant poles is shown in

g6,

. Now compensator is not used, that
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Fig.6 Root loci band of a passive adaptive control
system with first-order lag uncertainty.

These numerical examples show the applicability of
this method to the robusl control systems design.

6 Conclusion

In this paper, we present a method Lo calculale the char-
acleristic root areas and its algorithin. “T'he array of the
boundary curves is calculated easily on a workstation
and gives an aid to control system designers. Tlere-
fore, the method proposed in this paper will be useful
as the visualized method when designing robust control
systems.
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whete 7 is uncertain or varying parameler and 7. is the o] =8 B 7IHE R4 BFo AT AR AN oo
time constant of lag faclor to realize Lhe inverse function aeryo,
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