'94 KACC (1994.10.17 ~ 20)

Real-time Collision-free Path Planning
for Robot Manipulator

Koichi Hamada and Yoichi Hori
Department of Electrical Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokvo 113, Japan

Abstract — This paper presents a real-tiime calcu-
lation method Lo generate the trajectory of robot
manipulator for the purpose of avoiding collision.
In order to model 3-D workspace, we use octree
which has been used for fast collision detection.
The levels of octree are used as the cost func-

_tion-to represent the distance between the ma-
nipulator and the obstacles. This criterion is not
exact, but, due to this, we can obtain the approx-
imate feasible trajectory extremely quickly. We
will show e effectiveness of our method with
some simulation examples. For example, the pro-
posed method can solve a problem within 1 sec-
ond on Intel 80486 processor running at 33 MIz.
It Las taken more than half an hour with one of
the previously proposed methods.

1 Introduction

With the extended use of moving robots in manufac-
turing and nuclear industries, the problem of collision-
free path planning has become more important. The
collision-free path for manipulator should be planned an-
fomalically in a rcal-time manner to improve cefliciency
of work. In this paper, we propose a real-time calculation
method to generate the colliston-free trajeclory of robot
manipulator.

In the previous papers, many methods to plan the
trajectories for robot manipulator have been proposed.
I s known well that the methods using the Confign-
ration Space (8] are cfiective in collision avoidance. As
large commpuler memory is necessary for the Counfigura-
Lion Space, the way to reduce the amount of dala is also
studied.

Another method, the potential field approach [3], [6].
[7] uses polential hnclions for obstacle avoidance. The
obst

cles are assumed to have clectric charges. The ve-
sulting scalar potential field is used Lo represent the free
space. Collision between the obslacles and the tobol
are avoided by a repulsive force between them. In this

method, path-planning is done in Confignration Space
and it also needs a long calculation time.

The number of the dimensions of Configuration Space
increases in proportion to that of the manipulator joints.
Il ineans that the ainount of treated data becomes larger.
Then enormons computer memory is needed, or the Con-
liguration Space should be quantized roughly. Consid-
cring these reasons the path for manipulator should be
planned in the workspace, that is, in the Real-Space. Our
method is the palh-planning in the Real-Space, which is
applicable to mulli-axis manipulator.

In order 1o model 3-1) workspace, we nse the octree [4]
which has been used for fast collision detection. An oc-
Lree recursively decomposes Lhree-dimensional space into
eight cqual cubic octans nutil each octant meets some
decomposition criferia;

The levels of Octree are used as the cost function to
represenl the distance between the manipulator and the
obstacles. This criterion is not exact, but, due to Lhis, we
can oblain the approximate lcasible trajectory extremely
quickly.

Section 2 and 3 describe how to model the workspace
and the manipulator. "The algorithin for path-planning is
explained in Section 4. ‘T'he performance of onr algorithm
is demonstrated on a variely of examples in Section 5.
Section 6 deseribes conclusion and fulure work.

2 * Model of Environment

In this section, we brielly sunmmarize the use of the octree
and how to model the workspace. T nsnally takes alol of
time to detect collision between the manipulator and the
obstacles. We

solve this problem by using the octree.

2.1 Octree

We nse the octree for collision detection between the ma-
nipulator and the obstacles. The octree is a hierarchi-
cal data structure which recursively decomposes three-
dimensional space into cight equal cubic octans nntil cach

— 328 —

oclant meels some decomposition eriteria.

First. a given enviromment is divided into cight equal
cnbes and check whether cach enbe collides with the ob-
stacles or nol. These cubes are called Octree of levell,

If a cnbe doesn’™t collide with the obstacles, weneed not
check collision between the manipulator and the cube of
the next level because the cube shows emply space. Il a
cube collides with the obstacles, the cube is recursively
divided into cight equal cubes and collision is checked.
This decomnposition process is performed until cach divi-
ston satisfies the required resohition.

For example, when we think of an environment includ-
ing, obstacles shown in Figure 1, the process of division
are shown in Fignre 2. This division should be done once

“only when the environment is changed.

Igure 1t Environment with obstacles.

3 Model of Manipulator

We model the manipulator in a st of cubes becanse the

octree is a

el of cubes and with this modeling, we can
detect collision agaiust it quickly.

6-axis manipulator are used for explanation and sim-
ulation. The manipulator shown in Figure 3 is modeled
as Figure 4. T'hirly enbes are used to cover it. Each size
of cubes are changed to cover the manipulator.

3.1 Collision Detection

This section describes the algorithm to detect the col-
lision. First, we pick up one cube which composes the
manipulator and check the collision with the octree of
levell which has eight large cubes. I the octree of levell
and the cube collides, we Turther check the collides with
the octree of level2. These collision checks are done unlil
the cube collides with the octree of last-tevel or the octree
in the obstacles. In this case, we think the manipulator
collides with the obstacles.

We repeat Lhese collision check for all enbes that com-
poses model of the manipulator,

These collision check against one manipulator posture
needs 2ms in average on an Intel 80486 processor ranning

al 3IM 2

18

Ifigure 2: Octree of cach level.('The number left above
shows the number of cubes which compose that level.)

IMigure 3: 6-axis robot ma-
nipulator

— 329 —

Ls = SOLS {mm]

L= 320 o

1i = 360

Le=37s i
Li = a0

Le = 116

Le =102

o TS FoT) 2048

FFignre 1: Cubes which
cover the robol manipula-
Lor

3.2 Manipulator with Baggage

Iu previous seclion, we modeled the manipulator in a sel,
of cubes. When the manipulator picks np a baggage with
its hand, we need to model the baggage to avoid collision
against the obstacles. As complicated modeling makes
the planniug difficull, it is necessary for the model Lo be
stmplilied. From my standpoint of view, il is convenient,
to model the baggage in a set of cubes becanse they can
be treated as a parl of the manipulator and need not
change Uhe algorithm for path planning whether the ma-
mpulalor takes the baggage or nol.

For example, when a manipulator with baggage as l'ig-
nre 5 s given, we can model this like Figure 6.

Figure 6: Model of baggage

4 Collision Avoiding Motion

This section deseribes the algorithim for collision-lree
palh-planuing. Using the levels of the octree, we can
generale Lhe path quickly.

4.1 Distance among Manipulator and
Obstacles

We think that the levels of the octree reflect the distance
belween the manipulator and the obstacles. In this sce-
tion, we make a cost fanction named Jy which roughiy
shows how [ar the maniputator is away from the obsla-
cles.”

When we cheek collision between the manipulator and
the obstacles, we can know which level of the oclree col-
Jides with the each cube of the manipulator and give cach
cube the value corresponding to its collision level.

Suwnming wp the values ol cnbes which compose Lhe
manipulator, we ¢an make the cost funetion J, which
represents distance between the manipulator and. the ob-
stacles. The cost lunction is shown as lollows.

nianipulator

J, = Z < cosl given by) (1)

Lhe collision level

When the value ol Jy s small, distance belween the ma-
nipulator and the obstacles is loug. To the contrary, when
Lhe value ol Jy s big, distance between Uie manipulator
and the obstacles is short.

1024

00

Y-axis

1024
2048 2048 X-axis

Figure 7: 'T'he levels of the octree Lo deleet collision with
the manipulator.

4.2 Determination of Manipulator Pos-
ture

We make a function which has smaller value when the
distance between the manipulalor and the obstacles be-
comes bigger and when the configuration of the manip:
ulator becomes closer Lo final configuration. If we can
get this funetion, collision-free path can be generated by
moving the manipulator in the divection that the value
of funclion becomes smaller. One of such funclions is
shown as follows,

J o=
e (CurConf — FinCon[)?

G
. e 2
Distanec betrween Tip
+ A
and movable cenler

(2)
Where
CurConf :enrrent configuration.,
'onCon f : final configuration.

movable ecnicr @ the conter of the regions
which the manipulator can move frecly,
We simplily this equation and write as

J=Ji v aldy+ By (1)

— 330 —

By sciling proper vajues lo paramecters o and 3, we can
gel collision-free path by evaluating the unction J at
cach step.

o .J; drives the manipulator away from the obstlacles.

e Jyis an error belween current configuration and (inal
configuration. The manipulator is driven Lo the final
posture as Jy becomes smaller.

o Jyis a dislance between manipulator top and the
movable center shown in Figure 8. This terin pre-
vents Lthe manipulalors path from growing wider.
Fven when there are no obstacles in workspace, the
region which the manipulator can move frecly is
strictly restricted. We think the center of such region
aud pull the path into the direction of the center.

Movable Center

Figure & Manipulator can move freely in this cube.

Local minimum of the function J ocent somelimes.
When local minimum is detected, we increase the value
of the parameter a. This incans the wanipulator is pulled
up in the divection of final posture. But further consid-
eration shonld he given in this point.

5 Path-Planning Examples

Our algorithm has been lested on a variely of examples,
First, T show the paramelers we scl. The max level of
the octree is six and the cost for each level of octree is
defined as follows,

levell | fevel2 I level | leveld I levels | levelG
1] 1000 | 10000 | 60000 | 200000 | R00000
a=1.0
#=05

these values also require further consideration. T'he ini-
tial value of paramecter o makes no sense because the
dimension of function J; and J; are different. Bach joint
angle is quantized into sevenly two(five degrees).

"The algorithm has been implemented on a Sparc Sta-
tion 10 work slation using C langnage on Solaris QOperat-
ing System and on a IBM-PC with Intel 80186 processor
running at 33 M1z using C language on Linux Operating
Systeni.

5.1 Example 1

Collision-free path is planned [rom the posture shown in
Figure 9 to one shown in Pigure 10. "The result is shown in
[igure 11 and exccution thme is 1.3s with M86(33M1il2),
0.8s with $S10.

[1024

Figure 9: Initial posture Figure 10: Final posture

1024

00

h’i:.

1024

2048

2048

Figure 11: Planuned motion(Example 1).

5.2 Example 2

Collision-free path is planned from the posture shown
in Iigure 12 to one shown in. Ifignre 13, The result
is shown in Figure 15 and excention time is 0.8s with
MRG(3IMINZ), 0.55 with SS10.

Planning from the posture shown in Fignre 12 1o the
posture shown in Figure 13 and the opposite direction
generates different paths. When two postures are given
such as Fignre 12 and Figure 13, to which direction
should we plan the path?

It is notl. better to plan the palh toward the posture
shown in Fignre 12 from Fignre 13 because function J
falls into local minimum immediately. So we shonld plan
the path toward the posture shown in Figure 13 from
Figure 12, in other words, path planning should be done
toward cimply space.(shown in Figure 14) We trace back-
ward the planned path when it is necessary.,

5.3 Example 3

Collisiou-free path is planmed from the posture shown
in Figure 16 to one shown in Iigure 17. The result
is shown in Figure 18 and cexcention time is 1.1s with
MRG(I3MIT2), 0.7s with $S10.

- 331 —

Fignre 12: Initial posture

Iigure 14: Difference in difficulty due to the motion di-

rection.

1024)—

|l diffigult

Iigure 15: Planned motion{ Example 2).

ignre 16:

1024
Y-axis

[nitial posture

1024

Iigure 13: Final posture

Figure 18: Planned motion(Example 3).

5.4 Example 4

Collision-free path is planned from the posture shown in
Fignre 19 to one shown in Fignre 240 This exanple shows
Lhe motion that the manipulator moves the baggage out
of the box and put il on the-table. I'he resuli is shown
in Fignre 19 ~ Figure 24 and exceution time is 3.8s with
486(33M1z), 1.8s wilh SS10.

Figure 19: Initial state Fignre 200 step 4

2048

2048

Figure 210 Minal state

[ligure 23: step 4

5.5 Comparison with other method

The exatiple 1 shown in section 5.1 is Lhe same simula-
Ny e tion as the one which was planned nsing graph search in
Iigure 17: IMinal posture . . . - "

confignration space and il required abont hall an hour
on VAXIT/T80 for planning.

— 332 —

Ny

Compared with Lhis, we can confirm our method is very
guick. (onr method requires only 3.8s even wilh i486.)

6 Conclusions and Future work

In this paper, the nethod to plan the collision avoiding
trajectory quickly for manipulator is proposed.

This method is based on the idea that the levels of the
octrec rellect the distance between the manipulator and
the obstacles.

Our method is applicable to various problems regard-
less of the number of degrees of freedom of the manipu-
lator, its structure, and the presence of grasped object.
This is becanse the planning is processed not in con-
fignration space but in real space even with multi-axis
manipulator.

The experitnental results by computer simulalion are
shown, and the efliciency of our method is confirmed.

We plan to study how to fix the values of parame-
ters and to demonstrate the effectiveness of our algorithin
will the real manipulator.

References

[1] Clifford A. Shalfer, Gregory M.Herb, “A Real-Thine
Robot Arm Collision Avoidance System”, 1EEE
Transaclions on Robotics and Automation, Vol.8,
No.2, pp.i19-160, 1992

Masaaki Shibata, Kouhei Ohnishi, “An Approach to
Collision Avoidance Issues For Redundant Manipu-
lator”, 1INCON, pp.1488-1193, 1993

2

3

Yonk K. Hwang, Narenda Ahuja, “A Polential 1%eld
Approach to Path Planning” | IEEE Transactions on
Robotics and Automation, Vol.8, No.1, pp.23-31,
1992

[1] Kang Sun and Viadimir Lumclsky, “Path Planning
Awmong Unkuvown Obstacles, The Case of a Three-
Dimensional Cartesian Arm” TEET Transactions on
Robotics and Aufomalion, Vol.8, No.6, pp.776-786,
1992

(5} Wiromu Ouda, Tsulomu llasegawa, and Toshihiro
Matsui, “Collision Avoidance for a 6-DOF Manip-
ulator Based on Empty Space Analysis of the 3-1)

Real World™, Proc. IROS, pp583-589, 1990

(6] Jin-Ol Kiin, Pradeep K.Khosla, “Real-Time Obsta-
cle Avoidance Using llarmonic Potential Functions™,
IEEL Trausactions on Robotics and Automation,
Vol.8, No.3, pp.338-349, 1992

(7] Keisuke Sato, “Global Motion Planning using a
Laplacian Polential Field”, Journal of Robolics So-
ciety of Japan, Vol.11, No.5, pp.702-709, 1993

(8] Koichi Kondo, “Collision Avoidance by Free Space
Fnumeration Using Mulliple Scarch Strategies™,
Journal of Robotics Socicty of Japan, Vol.7, No.4,
pp.88-98, 1989

[9] H.Noborio, S.Inkuda and S.Arimoto, “A New In-
terference Check Algorithm Using Octree”, Proe. of
TEEE International Conference on Robotics and Aw-
tomalion, 1987

{10] Iliroshi Noborio, Motohiko Watanabe and Takeshi
Fnjin, “A Feasible Algorithm for Planning a Contin-
uous Sequence of Collision-1"ree Motions of a Manip-
ulator™, SICE, Vol.26, No.12, pp95-102, 1990

- 333 —

