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Abstract

This paper develops a representation theory of linear
systems by means of doubly coprime factorizations, and
applies the theory to the simultaneous stabilization prob-
lem for a given set of linear systems.

1. Introduction

This paper develops a representation theory of multi-
variable linear systeins by means of doubly coprime fac-
torizations. This development is based on the results of
R. Saeks and J. Murrayfl], and generalizes their results
to multivariable linear systems[2]. Further, this represen-
tation theory is used to analyze the simuftaneous stabi-
lization problem for a set of linear systems.

First, it is shown that any linear systems can be rep-
resented by a unimodular matrix over the ring of proper
stable rational functions, and various properties of such
representations are presented. In parlicular, the set of all
stabilizing compensators for a given system and the set
of all linear systems which are stabilized by a given com-
pensator is given in the frame work of this represetation
theory. Fur&:er, applying these results to the problem of
simultaneously sta%ilizing a given set of linear systems by
a single compensator, necessary and sufficient conditions
for the problemn to be solvable are obtained.

2. A Representation Theory

First, let us introduce the following notations:

R(s) := the field of all real rational
functions of s

Rp(s) := {feR(s)]|{is proper}
S := {T€Rp(s)]|fisstable }
Mrxe the set of all p x ¢ matries
with elements in M
I, := the ¢ x ¢ identity matrix

Now, notice that any P € Rp(s)"*™ has a doubly co-
prime factorization (d.c.f.) over S, characterized as

P=ND'=D"'N (2.1)

[—}N )I;] [ze _yX]=I.,.+, (2.2)

where NN € S*™ DY € 8™ D, ¥ € $* aud
X, X € S™"(See, e.g., [3]). (N, D) is called a right co-
prime factor(r.c.f.) of P and (D, N) a left coprime fac-
tor(l.c.f.) ol P.

Using a d.c.f. of P, we introduce two matrices R -and
L € §tmtX(m+7) a5 follows:

weln P e 53]

We call the matrix R(L) a doubly right(left) coprime rep-
resentation of P, abbreviated by d.r.c.r.(d.l.c.r.). Clearly,
by the definition, R and L belong to St +7)*(m+1) 4pq p=1
= [. In particular, if P € S"*™ then it has a d.r.c.7. of

the form I
m 0
R:= [ P I ] . (2.3)

It should be noticed that for linear system P €
Rp(s)*™its d.r.c.r. R € SU™+7X(m41) {5 not unique, and

that R has its inverse matrix L in S(™+)*(m47) There.
fore, the set of d.r.c.r.’s Rofall P € Rp(s) ™ constitutes
a group, and so the following definition will be introduced.

Definition 2.1
(1) Let GLg(k) denote the group consisting of all k x k

unimodular matrices over

(lll)) Let E(p, q) denote the subgroup of GLg(p+q) given
Yy

By E
E(p,q) := {[ o E;z]IEnGGLs(p),

E22 € GLS(q),E12 € stq} . O

Then, it is not difficult to prove the following theorem.

Theorem 2.2 Let R, R € GLg(m + ). Then, R and
R are d.r.c.r.’s of the same system P € Rp(s)™>" if and.
only if there exists an £ € E(m,r) such that R = RE.
[m]

If linear system P € Rp(s)*™ is stable (that is,

P € S"™™) then a d.r.c.r. of P is given by (2.3). There-
fore, it is meaningful to introduce ﬁle following subgroup
W(m,r) of GLg{m + r):

W(m,r) := {[ 1}’;‘ IO ] IP € S"‘"'} .

Further, let us denote by S(m,r) the set of d.r.c.r.’s of
all stable linear systems in Rp(s)™ ™. Then, it is easily
seen that

S(m,r) = W(m,r)E(m,r).



Note that §(m, r) does not form a group. However, since
both W(m,r) and E(m, r) are groups, one obtains

S(m,r)™! = {S7! € S(m,r)}
= E(m, r)W(m,r).
Now,the following l.heorem will be proved.

Theorem 2.3 Let F € Rp(s)'x"‘ and a d.r.c.r. of P be
given as

T = ,71'11 7‘12 c GLS(TI1+ 7‘)
Tn Tn
where 7111 € szm| T12 € Smx', T21 € S”("I and ng €
S™*". Then:
(i} T' € S(m,r) il and only if 71, € GLg(m).
(it) T € S~'(m,r) if and only if Ty, € GLg(r).

Proof. Only the statement (i) will be proved because the
statement (ii) can be shown in a similar manner to (i).
(Necessary) Suppose that T € S(m,r). Since S(m,r)
= W(m,r)E(m,r), there exist W € W(m,r) and E €
E(m, r) such that T = WE. In fact, T can be represented

as
le 7 12 El] E12
/ Wzl Ey

_ b B
Wa By W21E12+E22

il

T

Therefore, one obtains
T“ = Eu € GLS(?TL)

(Sufficienl) Suppose that T1; € GLg(m). Now, decom-
pose T as

Ty T
T = .
[ Tn T ]

— -[m Tll TlZ
TuTg' I 0 Top— TuTH' Ty

Since Tj;' € GLg(m), one has T Tj;' € 7™ and hence
the first matrix in the decomposition satisfies

Im 0O
W= [ TnTS 1, ] € W(m,r).
Further, since W, T' € GLg(m + r), the second matrix
satisfies
E = Tn T,
’ 0 To—TuTji' T
= W™T € GLg(m+7+)
and
' =T7'W € GLg{(m +r).
Thus,

E € E(m,r),

which implies that
T=WE & W(m,r)E(m,r) = 8(m,r).

This completes the proof of (i). O

3. Stabilization

Fig.1 A Feedback System

The basic feedback system configuration is shown in
Figure 1. Here, P € Rp(s)" *™ represents an m-input r-
output linear system and C € Rp(s)™ " a compensator

for P. Then, the transfer matrix F(C; P) from [ Zz ] to
1

up | . .
[ e ] is given by

i

F(C,P)

I-Cc(I+PC)'P Cc(I+PC)™!
[ —(I+ PCy'P (I + pPC)! ]

[ (I+cpy!

(I+cp)-ic ]
-P(I+CP)™!

I-P(I+CP)'C
and the following definition is given.

Definition 3.1 The feedback =ystem in Figure 1 is said
to be stable if

(i) det(J + PC) = det(I + CP) # 0, and
(i) F(C,P)€Ss.

In this case, such a compensator C is said to stabilize P.

Now, since

Yp = PUP = ND_lup‘

ik
Rp [ %’} (3.1)

where £p 1= D~up and Rp is a d.r.c.r. of P. Similarly,

one obtains that
uc &
R 2
Lel=n[5] oo

where Re is a d.r.c.r. of C.
Next, notice from Figure 1 that

one obtains that

(o]

up=v2+yc, Uc=7v —yp. (3.3)

Then, introducing matrix @ by

(3.3) can be represented as

Up .
[yr]"Q

e ] + [ "2 ] . (3.4)

Yo



Now, substituting (3.1), (3.2) into (3.4) and atraying the
resultant lead to

{“2 } = [RpP, + QRcQT P [ g ] (3.5)

U

where

I, 0 [0 o
ho= [o 0]’ P"[o 1,]'
0 -
T ,
v L7
Thus, the following lemma holds.

Lemma 3.2 In Figure 1, C stabilize P if and only if
RpPy 4+ QRcQTP, € GLg(m+r). O

Now, the following main theorem can be shown using
Lemima 3.2, but the proof is ommited.

Theorem 3.3 Given a linear system P € Rp(s)™*™, let

R.c(P) denote the set of representations of all compen-
sators C € Rp(s)™*" stabilizng P. Then,

Ra(P) = QTRpQS(m, 1),
where Rp isa d.r.c.r. of P. DO

Further, one can obtain the following corollary.

Corollary 3.4 A linear system P € Rp(s) *™ is strongly
stabilizable if and only if \

Rp € S(m,r)"'S(m,r)
where Rp € GLg(m+r)isa drcr. of P. O

Remark 3.5 It is noted that Theorem 3.3 is equivalent
to the parametrization thorem for stabilizing controllers
in You[a et al.[4] and Desoer et al.[5]. Further, it is
noted that Corollary 3.4 is equivalent to the result of
Vidyasagar[3](pp.125(ii)},[6]. That is, Rp € S(m,r)™!
S(m,r) if and only if there exists a K € S™*" such that
D+ KN € GLg(m) where (D,N)isany rcf of P. O

4. Simultaneous Stabilization

" T'he following theorem plays a key role in simultaneous
stabilization.

Theorem 4.1 Let C € Rp(s)™*" be given, and Rp{C)
denote the set of representations of all linear systems
P € Rp(s)™™ which are stabilized by the compensator
C. Then,

Rp(C) = QRcQ"S(m, 1)

where Rpisa d.rcr. of C. O

Corollary 4.2 Let P C Ryp(s)™™ be a sel of linear sys-
tems, and Rp C GLg(m + r) denote the set of d.r.c.r.’s
ol all ” € P. Then, a?l linear systems P € P are simulta-
neously stabilized by a single compensator in Rp(s)™*",
that is, P is simultaneously stabilizable if and only if there
exists a T € GLg(m + ) such that

Rp CTS(m,r). O

The following theorem will be proved.

Theorem 4.3 Let P, Rp be those as in Corollary 4.2.
Then, P is simultaneously stabilizable if and only if for

any P, P' € P there exist Tp, Tp» € S(m,r) such that
T5'Tpr = R3' Ry (4.1

where Rp, Rpr are d.r.c.r’s of P, P,
Proof. (Necessary) Suppose that I is simltaneously
stabilizable, that is, there exists a compensator C €
Rp(s)™" that stabilizes all P € P. Then, by Theorem
4.1, for each Rp € Rp(C) there exists a Tp € S{m,7)
such that

Rp = QRcQ™Tp.

Thus, for any P,P' € P

(QRcQ™Tr) ™ (QRcQ™Tpr)
TFITP',

i

R;]RPI

showing the necessary.
(Sufliciency) Suppose that (4.1) is satisfied, i.e., for any

P, P epP,
RpTp' = RpiTH {(4.2)

Now, take any P' € P and define
— 07 aln
Re:=Q"RpT,'Q (4.3)
where C indicates a compensator whose d.r.c.r. is given

to be the matrix QTRPlT;,’Q. Then, it is obvious that

R is independent of the choice of P'.
Next, take any P. Then, noticing that Q is orthogonal,
it follows from (4.2) and (4.3) that

Rp = RpTp!Tr = QQTRpTF'Q)QTTs
= QRcQ"Tp.
Since Tp € S(m,r), Theorem 4.1 implies that P is stabi-

lized by C. Since P € I” was arbitrary this proves that
P is simultaneously stabilizable.

Based on Theorem 4.3, the following corollary can be
shown.

Corollary 4.4 Let P, Rp be those as in Theorem 4.3.
Then, P is simultaneously stabilizable if and only if for a
fixed Py € P there exists a Tp, € S(m,r) such that

TR\ Te = RplRp forall PeP
where Rp,, Rp ate d.r.cr’sol Py, P. D

Remark 4.5 From Corollary 4.4, it follows that The-
orem 4.3 is equivalent to Theorem 22 in Vidyasagar
{3](pp.130). That is, there exists a set { Tp € S(m,r)

|P € P} such that T5' Ty = Rp'Rpi for any P, P € P
if and only if there exists a M € S™*” such that A; +
MB; € GLs(’m) foralli 0O

Next, we give a simple example.

Example 4.6 We consider the simultaneous stabiliza-
tion problem for the following three linear systems:

3(s—-1)(s+2) 3(s+2) .

P s(s~2) s(s—2)
! 2(s+1) 2(s—1)(s+1)
s(s—2) 5(s—~2)



[ 4(s—2)(s+2) 4(s+2)
p, o= | (=D(=3)  (s=1)(s=3)
2T 3(s+1) 3(s=2)(s+1)
L (s=1)(s=3) (s—1)(s=3) |
[ 5(s—3)(s+2) 5(s+2) ]
p. = (s—2)(s—1) (s—2)}{(s-4)
L d(s+1)  4(s=3)(s+1)
L (s=2)(s—4) (s-2)(s—4) |

Then, d.r.c.r.’s Rp, of P; (i =1,2,3) are given as

Rp =
s=1 1 1 1
s+1 542 542 (s+1)(s+2)
S G S |
s+1 s+2  (s+1)(s+2) s+1
3(s+2) 0 1 0
s+1
2(s+1
0 s+2 0 1
Rp, =
s=2 1 1 1
s+1 s+2 542 (s+1)(s+2)
1 s=2 - =1
s+1 s+2  (s+1)(s+2) s+1
4(s+2)
P 0 1 0
I(s+1)
0 542 0 1
RI'.\ =
s=3 1 1 1
s+1 s+2 42 (s+1)(s+2)
D T e S B =1
s+1 s+ (s+1)(s+2) s+1
5(s+2) 0 1 0
s+1
4(s+1)
0 542 0 1

Matrices Tp,(z = 1,2,3) are computed to be

sk s ]
s+1  (s+2)
s+4 s+1 00
7 = (s+1)? 542
A= 3(s+2)
0 10
s+1
2(s+1)
0 542 0 1.
ly s_“tZ s—1 0 0.
s+l (s+2)?
s+5 s+1 0 0
T = (41?7 532
s+1
3(s+1)
0 s+2 0 ].

S_ﬂ s—1 00 1
s+l (s42)?
s+6 s+1 0 0
YT _ (.~:+1)E s+2
o= 5(s+2) :
10
s+1
4(s+1
0 s+2 01

and these satisly
Tp Te, = Rp!Rp, (3,5 =1,2,3).

Thus, by Theorem 4.3 the three linear systems are simul-
taneously stabilizable. Now, following the proof of The-
orem 4.3, a d.r.c.r. R¢ of a simultaneously stabilizing
compensator C is given by

1 0 00
0 1 00
Rc = L ——1
542 (s+1)(s+2) 10
) A 01
(s+1)(s+2) s+1
Finally, such a simultaneously stabilizing compensator is
obtained as
A =1
_ 5+2 (s+1)(s+2)
C= ~1 1 (]

(s+1)(s+2) s+1

5. Conclusions

This paper introduced and developed doubly right(left)
coprime representations of linear srstems. Then, using
such representations, necessary and sufficient conditions
for simultaneous stabilization were obtained.
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