A12 # PREPARATION OF HIGH-ORIENTED FERROXPLANA Ba₂Co₂Fe₁₂O₂₂ CONSISTING OF FINE SINGLE CRYSTALS Pusan National University Jae-dong Lee* Seung-ho Lee Tae-ok Kim #### 1. INTRODUCTION $Ba_2Co_2Fe_{12}O_{22}$ (Co_2Y) one of hexagonal ferrites has magnetic anisotropy of plana $type^{1}$, that is, easy magnetization plane (0001). Because of Sneok's effect $^{2)}$ by magneto-crystalline anisotropy, spinel ferrites are not adapt to high frequency, but Co_2Y is favorable magnetic core for very high frequency. Especially, with the progress of high frequency application to recent electronic engineering and telecommunication, the needs of developement of Co_2Y magnetic core for high frequency are increased. The various methods of preparation of Co_2Y have been reported, but restricted to single crystal growing for basic research of electromagnetic characteristics. Although the process using the wet chemical preparation was reported recently, to obtain Co_2Y of the single-phase crystals dipersed perfectly it is very difficult. This study is a basic research for manufacture of the high-oriented polycrystals, the magnetic properties of which can be compare with that of single crystal, using the powder by glass crystallization and pressing in magnetic field. #### 2. EXPERIMENTAL PROCEDURE Particles of Co_2Y single crystal are manufactured by crystallization of glass. The stable slurry obtained by mixing powder, distilled water (PVA 10 wt% an aqueous solution) and ammonium citrate, divasic 1 wt% as dispersant, was injected into plaster mold in magnetic field and dried for 24 hours at room temperature. The casting specimens was sintered from 1000~% to 1300~%. At 1200~%, sintering carried out at Po_2 = 0.1, 0.21, and 1 atm. The heating / cooling rate and the final hoding time are fixed to 200~%/hr and 1.5 hours respectively. The charateristic of powder and sintered samples were studied by use of XRD, SEM, TGA, dilatometer, and VSM. ### 3. RESULTS In the powder manufactured by crystallization of glass, CoFe₂O₄ phase is existed little besides Co₂Y phase. The magnetization and Curie temperature Tc are consistent with the other reported papers(σ_{m} = 35 emu/g, Tc = 670 $^{\circ}\text{K}$). Since σ_e converges approximately to 1 emu/g at 690 °C, the CoFe₂O₄ phase with Tc = 780 °K was identified. During sintering the disoriented pressed sample, the abrupt shrinkage is occurred at 1050 °C. By result of TGA, it is confirmed that the reduction reaction(Fe^{3*} --> Fe^{2*}) takes place at 1050 °C. The results of observation of cutting section of oriented sample show that average particle size is $3\sim 5~\mu m$, and paticles are distributed very homogeneously. The easy magnetization direction has the highest σ_s , σ_r value and the difficult direction the lowest σ_s , σ_r value and disoriented sample has intermediate value, but wHc has the same value in all cases. #### 4. REFERENCE - 1) J.Smit and H.P.H.Wijn , "Ferrites" , Philips Tech. Library , Eindhoven , the Netherlands , 202-210 (1965) - 2) J.L.Sneok , "Dispersion and absorption in magnetic ferrites at frequencies above one megacycle", Physica , 14 , 207-217 (1948)