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Abstract. Wang and Mendel proved (1991) that fuzzy systems with product inference, cen-
troid defuzzification, and everywhere positive membership functions (in particular, Gaus-
sians, Wang, 1992) are capable of approximating any real continuous control function on
a compact set to arbitrary accuracy. Kosko (1992) proved that fuzzy systems, in which
membership functions have compact support, and combination operation (V-—operation)
for rules is the sum, are also universal approximators.

In this paper, we generalize this result of Kosko and prove that for any &— and
V-—operations, any defuzzification procedure, and any basic membership function with a
compact support, the resulting fuzzy controls are universal approximators. Also, Wang’s
result is transfered to min-inference.

1. INTRODUCTION

It has been recognized that fuzzy systems and neural networks share similar structures.
Approximation capabilities of neural networks are justified by Hornik et al [HSW89] who
used Stone-Weierstrass approximation theorem to prove that neural networks are universal
approximators. Using similar technique, Mendel and Wang [MW91, W92] and Kosko [K92]
showed that some classes of fuzzy systems are also universal approximators.

In the present paper we prove that for any membership function with a compact sup-
port, &— and V—operations, and a defuzzification rule, an arbitrary continuous control can
be approximated by fuzzy controls. In other words, the resulting fuzzy systems are universal
approximators.

Specifically, with the ;ule base consisting of the rules of the following type:
_ if 21 is A] and =z, is A2 and... and 2, is A2, then u is B7
where Aj B’ are the terms of natural language that are used in describing j—th rule (e.g.,
“small”, “medmm”, etc).

The property “u is a proper control” (which we will denote by C(u)) can be described
as follows:
Cu) = (AN(z1) & A} (z2) & .. &A},(a:n) & B(u))v
(A3 (z1) & Az(mg) &...& AX(z,) & B¥(u))V

(A(21) & A3(29) & ... & Ai(z0) & BI(w))V

(AKX (1) & A¥(22) & &Af(zn) & BX (u))

After we translate A(z) as ui(z), B7(u) as g;(u), and & and V as.fy and fy, we form
the membership function: pc(u) = fv(pi,..., Pk ), Where
pj = fe(pia(21), p32(22), oo Bn(Zn), #j(4))), 5 = 1,..., K. We can now apply a defuzzi-
fication operator D to this membership function p¢(u) and thus obtain the desired value
Sf(Z) of the control that corresponds to £ = (23, ..., Zyn).

1414



In the next Section, we will specify the terminology and notations used in this paper,
and formulate the results. The proofs will be in Section 3.

2. DEFINITIONS AND MAIN RESULTS

First, Wang’s result [W92] remains valid when the product inference (fg.(a,b) = ab) is |
replaced by min inference (min(a, b)). Specifically, let us denote by F the class of functions
f:R* > R of the form f(%) = [T }c & min(p;i(2:),i = 1., n))/[Tiey min(p;i(z:), i =
1,...,n)], where p;:(z) are Gaussian functions, and %; are any real numbers. By Fj; we
mean the restrictions of elements of F to a domain U. The set of all continuous functions

on U is denoted by C(U). Then: ;
THEOREM 1. For any compact U C R, Fyy is dense in the sup-horm in C(U).

We now state a similar result, but for membership functions of a different type. All
membership functions are assumed to be continuous on the real line R. By a basic mem-
bership function we mean a continuous function po(z) that is positive for all = from some
interval (e,b), and is equal to 0 outside that interval. A membership function u(z) is
of the type po if pu(z) = po(kz + 1), for some real numbers k # 0 and /. Next, by an
&—operation we mean a continuous binary operation f :[0,1] x [0,1] — [0,1] such that
£(0,0) = f(0,1) = f(1,0) = 0, f(1,1) = 1, f(p,q) = f(q,p) for all p,q, f(p,q) < p for
all p and ¢, and if p > 0 and ¢ > 0, then f(p,q) > 0. For an V—operation, we require
the following: f(0,0) = 0, f(0, 1)= f(1,0) = f(1,1) =1, f(p,q) = f(q’P) for all p, g, and
f(p,g) 2 pforall p and g.

, A defuzzification procedure D transforms a membership function y(z) into a number in
such a way that if u(z) = 0 outside an interval (a,b), then D(u) € [a,b] (both centroid and
center-of-maximum are defuzzification procedures in this sense). By a fuzzy methodology
M we mean a triple consisting of a basic membership function yp, a pair of &— and
V—operations fg(p,q) and fy(p,q), and a defuzzification procedure D.

Assume that a fuzzy methodology M is fixed. By F(M) we denote the class of all func-
tions f : R® — R that are equal to f(Z) = D(uc), where pc(u) = fu(P1,02; s Pjs -y PK),
p; is defined previously, and all membership functions u;i(z), p;(u) are of type po. Then:

THEOREM 2. For any given fuzzy methodology M, and compact U C R™, F(M)y is
dense in the sup-norm in C(U).

3. PROOFS
Theorem 1: As in [W92), it suffices to verify the hypotheses of Stone-Weierstrass theorem.

- The fact that Fyy, is an algebra of functions, follows simply from the fact that if a;,b;
are all positive, then (min(a;, = 1,...,p)) X (min(b;, j = 1, ...,¢)) = min; min; a;b;. Indeed,
if f(f) = [Zf_:l "7'.7' min(#j,i(xi),i =1, -,n)]/[2§{=1 min(y‘j,i(mi))i =1, n)] and g(f) =
[Zf.;l vy min(v; (i), = 1,..., n)]/[}jj-’___1 min(v;,i(z:),% = 1,...,n)], and o is a real number,
then it is obvious that o f(vecz) is in F. The sum f(Z) + ¢(Z) and product f(Z)g(Z) of the
expressions f and g, involve terms of the form min(y;(z;),¢ = 1,...,n) min(v ifz;),7 =
1,...,n). The last term is equal to min(y;i(z:)vk,i(2i),i = 1,...,n), because the p;(z;)’s
and the vy ;(z;)’s are positive. The result follows from the obvious fact that products of
Gaussians are Gaussians.

Fiu vanishes at no point: min(a;,i = 1,...,p) is always positive.
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Fiu separates points: for §,7Z € R™, consider the element of Fy: f(Z) =
[min;(exp(—1/2(z; — ¥)?)]/[mini(exp(—1/2(z; — %:)?) + min;(exp(-1/2(z; — 2)*)].
Then f(2)/f(7) = min;(exp(—1/2(z; — %:)?) = 1 if and only if z; = y; for all 4, which is

impossible if § # Z. .

Theorem 2: Since U is compact, there exist a finite (§/2)—net, i.e., a finite set of points
#1,...,2% € U such that for every & € U there exists a j, for which p(Z,27) < é/2. Let us
fix such a net.

Let g belong to C(U), and € > 0. Let us form a rule base with K rules, one rule for
each point = (23,23, ...,z3) from the chosen §/2—net. This rule will take the for
Al(z) & AY(22) & ...Al(z) — Bi(u), ' :
where the corresponding membership functions are p;i(z) = fio((z — 2})/(8)), and p;(u) =
fio((v — u9)/(e/2), and by u’ we denoted u? = g(Z7), and where fio(z) = po(z((b — a)/2 +
(a + b)/2 is a function of type po that is > 0 for z € [-1,1].

It suffices to show that pc(u) is not identically 0, and is zero outside [¢(Z) —¢, 9(Z) +¢l.
Then the resulting inequality will follow from the definition of a defuzzification procedure
D.

First, let us prove that it is not identically 0. Since we chose the set {Z9} as a §/2—net,
there exists a j such that |z — z;| < §/2 for all i. Therefore, |z} — z;| < 6, hence z; €
(2 — 6,21 + 6), and, pji(z:) > 0 for all 7. If we take u = g(Z79), then we conclude that
(%) > 0. Since we demanded that fe(p,¢) > 0if p > 0 and ¢ > 0, we can conclude that

pj = fu(pin(21), #i2(2), s in(2n)s 13(w))) > O

Since fv(p,q) > max(p, q), we conclude that for this u, pc(u) = fu(P1, - Pjs -y PK) 2
p; > 0, so pg(u) is not identically 0. ﬂ

Let us now prove that if |u — g(Z)] > ¢, then pc(u) = 0. Namely, we will prove

that in this case, p, = pz = ... = p; = ... = pg = 0; then pc(u) = fv(p1,P2, .., PK) =
fv(0,0,...,O) =0. _

Let us take an arbitrary j from 1 to K and prove that p; = 0. Indeed, since

b; = fe(pin(z1), 15.2(22)s s 5,0(20), 15(2))) > 0
and f(0,p) = 0, the only possibility for p; to be positive is for all the terms mia(z1),
15.2(%2)5--sp5,n(Tn),and pj(u) to be positive. Because of our choice of i, the first term
is positive only for |2y — z{] < §. In a similar manner, the first n terms are positive if
|z; — 21| < 6 for all i. But in this case, by the choice of 8, |g(Z) — g(&%)| = |9(Z) —vI| < e/2.
We assumed that |u — g(Z)] > ¢; therefore, |u — w?| > |u — g(Z)| - |9(Z) — v’| > £/2, and
pi(u) =0.

So, for every Z, either one of terms u;i(z;) is equal to 0, or they are all positive, and
then p;(u) = 0. In both cases, p; = 0. So, pc(u) = fv(p1,..,Px) = f(0,0,...,0) = 0 for
all u outside an interval [g(Z) — ¢, (%) + €], and thence f(Z) = D(uc) belongs to this same
- interval. Q.E.D.

4. CONCLUSION

In view of the results of Wang and Mendel, Wang, Kosko, and ours, many classes of
fuzzy systems are universal approximators. The choice of a fuzzy methodology should be
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based upon additional considerations such as smoothness, stability, or robustness of ‘the
resulting control (see, e.g., [KQL91], [KQLFLKBR92], [NKT92)).
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