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ABSTRACT

This paper presents a fuzzy system that estimates the
optimal bit allocation matrices for the spatially active
subimage classes of adaptive transform image coding in
noisy channels. Transform image coding is good for im-
age data compression but it requires a transmission er-
ror protection scheme to maintain the performance since
the channel noise degrades its performance. The fuzzy
system provides a simple way of estimating the bit allo-
cation matrices from the optimal bit map computed by
the method of minimizing the mean square error between
the transform coeflicients of the original and the recon-

structed images.
1 Introduction

Transform coding is one of popular image data compres-
sion techniques in that it shows faithful reconstructed
image quality for a given compression ratio, compared
to other methods [2]. But the performance of the trans-
form image coding degrades in the presence of channel
noise. So transform coding requires a transmission error
protection scheme to maintain its performance when we
transmit coded transform coefficients through noisy com-
munication channels. Modestino [4] demonstrated that a
joint design of the source and channel coders improved
reconstructed image quality in noisy channels while main-
taining a fixed transmission rate.

) As a different approach, Vaishampayan (53] developed
an optimal cosine transform coding system in noisy chan-
nels by minimizing the mean-square error D between the

discrete cosine transform (DCT) coefficients of the origi-

nal subimages (X (u,v)) and of the reconstructed subim-
ages (X (u,v)) of size M x M:

1 M-1M-1

D = 352 X ElX@v) =Xl , ()

u=0 v=0

where E[] denotes the expectation operator, and E[ | X (u,v)—

X (u,v)]?] defines a distortion function. Here the system
considers the optimal bit allocation process as an opti-
mization problem.

Adaptive transform image coding systems [1] {3] clas-
sify subimages into four spatially active subimage classes
according to image activity level measured by the AC en-
ergies of the subimage. Each subimage class require a bit
allocation matrix to encode its pixels with different bit
allocation in order to improve coding performance. This
paper presents a fuzzy system that provides a simple way
of generating the four optimal bit allocation matrices in
noisy channels. The fuzzy system is trained with the
input-output product-space data from the given optimal

bit allocation process.

2 Stochastic Image Model

We can model an image as a two-dimensional separable

and stationary Gauss-Markov random field,

z(m,n) = px(m—1,n) + pz(m,n—1)
— pepex(m —1L,n=1) + w(m,n) (2)

where p, and p. denote the vertical (row) and horizontal
(column) correlation coefficients, and {w(m,n)} repre-
sents a two-dimensional independent and identically dis-
tributed Gaussian random sequence with zero mean and
variance 2. If {z(m,n)} has zero mean and variance ol

then
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Bla*(m,n)] =

o2(p? + P2 + p2p2) + 2prp Elz(m
—1,n)z{m—1,n—1)]

- 2p2pElz(m

- QPTPEE[‘T(mv n-— 1)x(m

—1l,n-1) 4+ o}

—1,n)z(m,n — 1))

®3)

= o2(p? + p2 + plpt + 20202 — 2p}p% — 22p2) + ol (4)

the parameters p,, pc, mean, and o2 are averaged over
64 subirﬁages for each subimage class. Subimage class |
contains lots of image details and therefore shows lower
correlation values, Class 4 includes less image details, so

it shows higher correlation.

= o2(p+pl—plpl) + o) (5)
_ R(1,0) _ Elg(m,n)z(m —~1,n)]
= R0.0) - E@(mn)] (6)
_ R(0,1) E[z(m,n)z(m,n — 1)]
O R F R

The autocorrelation function R{k,[) can be approximated
Therefore the

by the sample autocorrelation functions.

noise variance can be computed as

ol = ol(l—p2)(1-pd) (8)

For the Gauss-Markov image model defined in (2), the

variance o2(u,v) of the DCT coefficient X{u,v) factors

as

o*(u,v) = of(u)or(v) (9)

We can easily compute ¢?(u) and o?(v) using the two-

dimensional DCT algorithm as

[ Image'iCIass( pr "Pc l or W

mean

1 0.8886 | 0.8348 | 2288.01 | 85.79
Lenna 2 0.9123 | 0.8835 | 1302.38 | 91.70

3 0.9322 | 0.9248 | 44745 | 109.21

4 0.9351 | 0.9343 | 107.33 | 109.31

1 0.8990 | 0.9021 | 3447.05 | 139.42
F-16 2 0.9279 1 0.9266 | 1789.25 | 165.00

3 0.9361 | 0.9368 | 198.11 194.58

4 0.9377 ] 0.9374 | 12.58 211.30J

oo (u) =
20, 2 VSIE (2m + Vur
a’(u) g:o :L; pv €08 o
(2n+1)u7r
5H7 (10)
o2(v) =
20, o L —nl 2m+1)v7r
o @m + 1or
DR oM
cos(-?n—;%)—v—’r— (11)
where a(0) = 1/v/2 and a(k) = 1 for k = 1,...,M —

1. Equations (10) and (11) correspond to the diagonal
elements of the M x M DCT coefficients of the matrix
P70 < myn < M — 1, multipled by o.

In the adaptive transform image coding, we divide an
image into 16 x 16 subimages, and classify the subim-
Each

subimage class assumes the Gauss-Markov image model

ages into four spatially active subimage classes.
with different parameter values. Table 1 shows the pa-
rameters of each subimage class computed from the two

sample images, the Lenna and the F-16 jet fighter. All

Table 1: Parameters computed from the Lenna and the

F-16 images.
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Figure 1: The 32 x 32 optimal bit map for ckannel noise
with € = 0.01.

3 Optimal Bit Allocation for

Subimage Classes

The optimal bit-allocation process in [5] provides the
input-output product-space data of the form (o;r). Here
o(u,v) denotes the standard deviation of the DCT coef-
The

given 32 x 32 standard deviation matrix o(u,v) are com-

ficient X (u,v) of the Gauss-Markov image model.

puted by Equation (9) with parameters p, = 0.9790,

= 0.9746, mean = 73.57, and o2 = 1816.56 [5] for
the Lenna image. r(u,v) represents the (u,v)th element
of the 32 x 32 optimal bit allocation matrix shown in
Figure 1 computed for noisy binary symmetric channel

with bit error probability ¢ = 0.01 and the bit rate of
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1 bit/pixel. The value of r(u,v) indicates the bit allo-
cation of the transform coefficient X (u,v) and is either
0,1,...,7mae. We often choose the maximum value of
Tmar a8 8. The standard deviation and the optimal bit
allocation gave 1024 (= 32 x 32) input-output product-
space data of the form (o, 7).

A fuzzy system estimated the four optimal bit allo-
cation matrices for each subimage class of the adaptive
cosine traasform coding. A fuzzy rule (o (u,v);re(u,v))

represents the association:
[F or(u,v) belongs to I;, THEN assign i to ri(u,v).

where o, and r; denote the standard deviation and bit
allocation for the kth subimage class with & = 1,...,4
and u,v = 0,1,..., M — 1. I; represents fuzzy decision
intervals, ¢ = 0,1,..., "oz 50 (Fymaz+1) fuzzy rules gen-
erated the four optimal bit allocation matrices for each

spatially active subimage class.

Bit allocation (r) [

7+ MR »

Standard deviation (o)

Figure 2: Training data (o;r) and the decision intervals.

We can estimate the decision interval I; from the train-
ing data from the input-output product-space (o;r). Let
gi denote the standard deviation value o{u,v) averaged
over each bit allocation value ¢,

1

9 = T

N, o(u,v) (12)

L) i (u,v)=i)

where ¢ = 0,1,...,7m. and N; denotes the number of

o(u, v) corresponding to the bit allocation r(u,v) = 1.
The fuzzy cells can be defined for the decision intervals

I; as non-overlapping intervals of membership functions,

(piy Piva)y t =0,1,...,Tsnaz, where

p = C(qi—12‘+‘qi) (13)

t = 11"-7rmaz -1, and Po = 0, Prmaz = Grmas=1 T
[9rmas—1 — Prmac—1l, and p._._41 = oco. For example, ¢

takes 2.4 for 8:1 compression and 4.6 for 16:1 compression.

L) 2 4 6 8 18

The input-output product-space data provided p; = 3.44,
p2 = 5.66, ps = 9.30, ps = 13.46, ps = 16.97, pg = 21.46,
p7

data (o;r) with decision intervals I;.

1t

28.49, and ps = 36.55. Figure 2 plots the training

The fuzzy system generated the four bit allocation

matrices for the decision intervals I; “trained” from the
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Figure 3: Optimal bit allocation matrices in noisy chan-
nels for approximately 8:1 compression computed by the

proposed fuzzy system with the parameters given in Ta-

ble 1.

input-output product-space data. Figure 3 shows the
four optimal bit allocation matrices for approximately 8:1
compression computed by the fuzzy system with the pa-
rameters given in Table 1. Table 2 demonstrates the cod-
ing performance of the adaptive transform image coding
techniques by the fuzzy subimage classification [3] and by
that of Chen system [1] using the four bit allocation ma-
trices. The fuzzy system showed similar but slightly bet-
ter signal-to-noise ratio while maintaining approximately
8:1 and 16:1 compression ratios.

The number of arithmetic operations provided arough
measure of computational complexity for the fuzzy sys-
tem. The fuzzy system required less computational ef-
forts for to estimate the optimal bit allocation matri-
ces than Vaishampayan’s bit allocation process, which
required heavy computation in order to compute and
minimize the complex distortion function E[|X(u,v) —
X(u,v)}3].
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| Image | SNR(dB) | c, | svr@B) | c, |
Lenna Fuzzy 27.97 8.2 25.62 16.7
Chen 27.93 8.3 25.56 16.9
Jet Fuzzy 27.64 8.2 24.85 16.8
" Chen 2737 |83 24.62 16.9

Table 2: Coding performance of the adaptive transform

image coding techniques by the fuzzy and Chen subim-

age

classification methods using the four bit allocation

matrices. C, denotes the compression ratio.

4

Conclusion

Adaptive transform image coding required the four opti-

mal

bit allocation matrices to maintain its performance

in noisy channels. To compute the optimal bit allocation

matrices in noisy channels, Vaishampayan [5] considers

the problem as an optimization. The technique is com-

putationally heavy since it should minimize the complex

distortion function, the mean-square error of the source

and

the received transform coefficients.

The fuzzy system, trained with the input-output product-

space data from the given optimal bit allocation ma-

trix

computed by the optimization technique, estimated

the optimal bit allocation matrices for the four subimage

classes. The bit allocation matrices by the fuzzy system

provided very close coding performance to that of the

optimal bit allocation scheme, but with much less com-

putation.
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