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Abstract

The paper introduces a new method for
fuzzy  processing. The method allows
handling a piece of information lost in
the classic fuzzification process, and
thus neglected by other methods.
Processing the result after fuzzification
is sustained by the interpretation that
the input-output set mapping, specified by
the IF-THEN rules, can be regarded as a
direct mapping of their corresponding
alpha-cuts. Processing 1involves  just
singletons as Iintermediary results, the
final result being a combination of
ingletons obtained from fired rules.

1. INTRODUCTION

A fuzzy set A on the universe of discourse
X, is the set of ordered pairs [1]

A = {(x, pa(x)) | xeX}. (1)

We consider in the following p,(x)e[0,1].
In classic "fuzzification" operation,
values from the universe of discourse are
assigned membership degrees to fuzzy sets
covering the universe. For convex fuzzy
sets, which feature non-sharp boundaries
on both sides, there are always two input
values (one at each side of the prototype)
which have the same degree of membership
to the set. Consider for example the fuzzy
sets Young (Y), Middle Aged (MA) and Oid
2j, with MA centred around 45 years olc
L2t us consider that a 50 years pere=r

belongs to the set MA in a degree of 0.8.
There is another age, assume 40, for which
the degree of membership is also 0.8.
Thus, the value of 0.8 might be a
sufficient characterisation of the degree
of membership of a value to a set, but is
not embedding the complete information
provided by the input value, since we are
not able to uniquely specify the age from
{o.8, MA}

Some information seems to be lost. If a
complete overlap of transitory regions for
two neighbouring sets exists (which is not
the case in all reported applications,
e.g. [2], [3]) then the complete initial
information is better found in the
conjunction "0.8 MA AND 0.2 O".

Let us observe that we are still unable to
deduce the initial wvalue using the
combination of sets and defuzzification
(which is not the exact reverse of
fuzzification). It is the case that for an
identical fuzzy system, 1i.e. mapping
identically fuzzy sets on themselves {e.g.
Low->Low, Medium->Medium, High->High), the
input-output characteristic is generally
nonlinear, with the nonlinearity being
arbitrarily introduced by the processing
method (e.g. MIN-MAX-COG) .

We suggest here that, instead of using
io.s, MA}, we should use the form

0.8, MA, 0} corresponding to the input
value equal to 50, reading for example as
0.8 Middle Aged towards 0ld. Thus, through
fuzzification we’ll specify not only the
degree of membership to the set, but also
the position relative to the prototype, in
the set of ordered pairs.

2. ALPHA-CUT SET BASED INFERENCE
2.1. Mapping «a-cuts

The alpha cut (a-cut) A , and the strong

alpha cut A’ are defined by (2), (3) [1].
A, = {xeX | pp(x) = ) (2)
= {xeX | pa(x) > ) (3)

The fuzzy set A could be represented as a
union of its o-cuts (representation
theorem [4]):

A= U o A, (4)
oe [0,1]

Congider a fuzzy system, with two input
and one output variables, and the rules
specified expressed by:

IF A and B THEN C (5)
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specified in the following by: r(A,B] = C,
with A, B, C fuzzy sets (graphical
corregspondence in fig. 1)

Fig. 1 Mapping fuzzy sets

Using the representation theorem this
could be interpreted as:
IF (U o, 2,) AN (U B, )
o€ (0,1] ope [0,1]
THEN U o, C. (6)
o€ [0,1]

Classic inference is related with fig. 2
and in terms of a-cuts this can be stated
as:

Uog, A , AN U B, ->Uaqa C (7)
o€ [0, 0al o€ [0, ab]l o€ [0,Min(wa, ab) ]

A B.

«
Y

c <
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Fig.‘z Classical interpretation for set
mapping

We comsider the basic mapping to be the
mapping of «a-cuts:

A A B

ab -> C Min(ca,ab) (8)

oa

as suggested in fig.3.

Fig. 3 Interpretation in terms of «-cut
mapping

This can be interpreted as a mapping of
intervals of confidence, with the
intervals of confidence being ordinary
subsets of R representing a type of
uncertainty [5].

Although Min is used in the exemples, in
general, any t-norm could be acceptable.

2.2 Mapping «-cut borders

Consider the difference between the two
sets A , and A’ _, the alpha-cut and the
strong alpha-cut.

BdA,={a, a'} = A _ - A, (9)
This delimits the borders of the interval
of confidence o.

An input value x corresponds to one of the
two borders of an a-cut, the fuzzification
process specifying now the a-cut (a=p,(x))
and which of the two borders of the w-cut
is addressed, e.g. by indicating the
neighbouring fuzzy gset towards the
prototype of which the border is oriented.
Thus the notation {ol, setl, set2} will
indicate the border of the wal-cut of setl
on the side of the prototype of set2.
From alpha-cut mapping we will continue
with the mapping of alpha-cut borders.

Consider the simple case of sets in fig.4
and the rules given by (10):

r[A,B] = C
r[Aa’,B] =
r{A,B'] =
r[a’,B'] = C"

c’ (10)
CI

Fig. 4 Mapping borders of x-cuts

Consider the input values be a and b.
a-» fozA, A, A'}, {ozA', A", A

b-> {aB, B, B’}, aB’, B’', B

Aa AN Bu -2 C i

A . AN By o> C Mawaah (11)
Ay N B 4, ->Cf Min(oc'a,ab)

Aly, N By ->C" Min(a’a,a’b)

Let us explain in more detail the

inference related to the first rule in
(11) .

The rule refers to the mapping of o,- cut
of A and ¢@,-cut of B, to the a,- cut of C.
The input value a is the border of «,- cut
set towards the prototype of A’.

a-> {aA, A, A'}, b is the border of o,- cut
set of B towards the prototype of B',

b-> {aB, B, B'}.
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The result infered through the rule is the
border of alpha-cut of C (r{A,B]=C)
towards the prototype of the set specified
by rules as being associated to A’ A B’
that is C" (r[A’,B’']1=C").

A, A',, B, B, C, C,y C",
are prototypes.

(1-cuts)

{an, A, A’} A {0B, B, B'} ->
¢! = {Min(eA,oB],r[A,B]l,r{A’,B’]}, border

of a-cut in C (r[A,B]=C) towards the
prototype C" (which corresponds to
A’ , AB , r(a,B']=C")

{aAn, A, A’} A {oB, B', B} ->
¢’ = {Min{eA,0B],x(A,B’'],r[A’,B]}

{on, A’, B} A {oB, B, B'} ->
¢® = {Min[oA,oB],r[A’,B],r[A,B"]}

{@n, A", A} A {oB, B', B} ->
c* = {Min[oA,aB),r[A’,B'],r[A,B]}

The final output value can be calculated
as a weighted (with corresponding a')
average of c¢', or as a simple average as
prefered in the following,

c= Xcd/n (12)
i=1,n

A numerical example:
a=1.3, b=1.8 (fig.4).
®, = 0.7, a', = 0.3, @ = 0.2, &’y = 0.8.
c! select in {12,28} towards 40, c! = 28
c? select in {27,333} towards 30, (both)
¢ = 27, ¢ = 33
c® select in {22,38} towards 30, (both)
= 22, c® = 38
c* select in {33,47} towards 20, c!= 28. ¢
= 33, using (12) with
c® and c%, c® and c¢*, contributing
independently, we obtain c = 30.16.

3. A PARALLEL PRESENTATION OF CLASSIC AND
ALPHA-CUT BASED FUZZY PROCESSING

Classic method:

fuzzifyl[x_,set, 1:={u,set;};

(13)
inference[{ul_,setl_},
, p2_,set2 }l:=
{Min[ul,pu2], Trlsetl,set2]};
" pha-cut based method:
ftuzzify[x_,set, ]:={a,set_,set,, };
(14)

inference[{al_,setl_,setl’ },
' {a2_,set2_,set2’ }]:=
{Min(a1,@2],r[setl,set2],r(setl’,set2’]};

Apart of the similarity of the above
formalism, the values in the two
approaches have different meanings (as
differentiated by fig. 3 and fig.4, and
equations (7) and (8). After (13), and the
combination of results from all fired
rules, we need to adopt a method for
obtaining a crisp value, method which is
not using the same convention as used in
fuzzification, while after (14) we can use
the same convention as we the one we used
in fuzzification.

4. SIMULATIONS

The wviability of the proposed method was
tested on the wvertical stabilisation of
the inverted pendulum. The parameters for
error, change in error and current are the
ones used in TILShell+ demo [8]. The fuzzy
system is pictured in fig. 5. The
corresponding membership functions are
presented in fig. 6. The rules are
presented in table 1. System response
using the «-cut based method is compared
with the one obtained using Min-Max-COG in
fig 7. It is observed that the a-cut based
method gives a better performance in the
first part of the response. This is easy
to predict if we observe that for large
values of Error as it is the case in the
first moments, COG defuzzification outputs
a value corresponding to the COG of PM,
which is less than the the value of the
prototype obtained using a-cut processing.
It was difficult to outperform another
method for which the membership functions

have been tuned to obtain a control
suiting the system to be controlled.
However even in this conditions the

proposed method performed satisfactory.
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Fig. 6 _Membership functions for error,
change in error and current
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Tabel 1. Rules for controlling the
pendulum
dE\E NM NS ZR PS PM
NM PM PM PM PS ZR
NS PM PS pPS ZR NS
ZR PM PS ZR NS NM
PS PS ZR NS NS NM
PM ZR NS NM NM NM

Brror

20 4 L] L] 100 120 140 180 180

Iterations

Fig. 7 System response: 1 - «-cut method,
2 - Min-Max-COG

5. DISCUSSION

There are many degrees of freedom we can
handle in optimising the performance of a
fuzzy system. For a particular inference
method, we can modify the membership
functions or/and the rules. Tuning could
be manual, or automatic using different
learning techniques. Zimmermann [1]
enumerates eight important criteria for
selecting appropriate aggregation
operators for fuzzy sets. The literature
offers studies on the effect of different
inference or defuzzification methods on
system’s output [6],[7]. However, it is
difficult to compare two fuzzy processing
methods, since with proper membership
functions adjustment and rule selection,
the corresponding control surface can be
shaped to almost any form. If we "freeze"
the membership functions and the rules one
method can perform better, but how can we
be sure we had frozen the most appropriate
selection? An other selection for
membership functions and rules might lead
to another ‘'better" suited inference
method.

A good criteria could be a time-based one,
considering both time for tunning the
system and time for processing the
information.

The "good" fuzzy processing method should
be the one which best matches two
conditions:

1. Leads to good results for the initial
description acquired from an expert,
without extensive tunning.

2. It is fast.

In relation with the above conditions,
in respect to the first one, we have the
argument that the here proposed method is

making Dbetter use of the information
provided on the system, including in
processing a piece of information

neglected by other methods from the moment
of fuzzification.

For the second requirement, in software
simulations the method is faster than
methods which require defuzzification of
an output set, having approximately the
speed of methods that defuzzify using
prototypes (singletons) . A hardware
perspective will be the subject of another
paper.

6. CONCLUSION

A new method for fuzzy processing is
introduced, having the following
characteristics: 1) Allows the handling of
a piece of information lost in classic
fuzzification stage, 2) Offers an
interpretation in the sense that input
membership functions in terms of their o-
cuts are mapped to output membership
functions in terms of their «@-cuts,
according to the if-then ruleg, i.e. a
mapping of intervals of confidence, 3) It
is simple and faster in sgoftware
implementations comparing with methods
that use defuzzification of an output set
for deriving a final crisp value, offering

comparative results in the tests
performed.
REFERENCES
(1] Zimmermann, H. J. (1985) 'Fuzzy Set

Theory and its Applications’, Kluwer-
Nijhoff Publishing

{2] Ollero, A. and Garcia-Cerezo, A. J.
(1989) ‘Direct Digital Control, Auto-
Tuning and Supervision Using Fuzzy
Logic’. Fuzzy Sets and Systems 30,
135-153

(3] Okada, H., et al (1992) 'Knowledge
Implementation Multilayer Neural
Networks with Fuzzy Logic’. Proc of
the 2nd Int Conf on Fuzzy Logic &
Neural Networks (Iizuka, Japan, July
17-22, 1992) pp. 99-102

[4] Negoita, C. V. and Ralescu, D. A.

(1975) ’'Applications of Fuzzy
Sets to System Analysis’. Birkhauser
Verlag, Basel.
Kaufmann, A. and Gupta, M. M. (1988)
'Fuzzy Mathematical Moaels L1
Engineering and Management Science’.
Elsevier, Amsterdam.

[6] Mizumoto, M. (1991) ‘Min-Max-Gravity
Method versus Product-Sum- Gravity
Method for Fuzzy Controllers’. In
Proc of the 4th IFSA Congress,
(Engineering) Brussels, 1991 pp. 127-
130.

{71 Lembessis, E. and Tanscheit, R. ’'The
Influence of Implication Operators
and Defuzzification Methods on the
Deterministic Output of a Fuzzy Rule-
Based Controller’ In Proc of the 4th
IFSA Congress, (Engineering)
Brussels, 1991 pp. 109-114.

'8] TogaiInfralLogic (1992) TIL Shell+

—1269—



