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APPROXIMATIVE INFERENCE IN HIERARCHICAL STRUCTURED RULE BASES

Laszlé6 T. Kéczy
Dept. of Telecommunication
and Telematics
Technical University of
Budapest
Sztoczek u. 2
H-1111 Budapest, Hungary

Abstract

The paper discusses the problem  of
controlling systems with a very high number of
input variables effectively by fuzzy If...then
rules. The basic idea is the partition of the
state spacé into domains, which step can be done
even iteratively several times,and every domain
has its own sub rule base referring to a
considerably lower number of variables than the
original space. In this manner the number of
necessary rules is drastically reduced and time
complexity of the control algorithm remains

acceptable.

1. Introduction

In the control of very complex systems,
often the number of input variables is very
high. Time complexity of even the traditional

(Zadeh or Mamdani style) fuzzy control

algorithms is too high for real time control.

However, often a few variables dominate the
system in a certain area of the state space.
This subset of variables changes when the
working point in the state space changes. In

this paper, a solution applying hierarchical
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structured rule systems is proposed.

The principle of fuzzy rule based control
was invented by 2Zadeh in his seminal paper [1]
where he described the compositional rule of
inference. Disadvantage of the original
algorithm is its exponential complexity in terms
of the number of input variables [2]). Another
algorithm invented by Mamdani et al. [3] has

polynomial complexity (cf. [2]}. A comparison of

the two can be found in [4].

2. Rule approximation

A special problem occurs when the rule base
does not cover the whole observation space: it
is sparse. Sparseness reduces complexity. Also
rules received by tuning the rule base [5] might
be located with "gaps" among the antecedents -
resulting in a partially sparse base. The need
of data compression e.g. for fast transmission
[6] is another motivation for discussing such
systems. If the source of evidence is
heterogenous, the rule base is often conflicting
(e.g. an expert system comprising the knowledge
of several specialists).

In sparse and/or conflicting rule bases

conclusion can be calculated by approximating



the fuzzy mapping R: X > Y. A theorétical
foundation for the approximation of R combines
the "graph view" interpretationin (7] and the
Resolution Principle, and is proposed in [8].
Applying the fuzzy mapping view combined
with the resolution principle, traditional
function approximation techniques can be applied
for every level set. An overview of such

techniques including extrapolation, regression

and other methods can be found in [9].

3. State spaces with a very high number of

variables
In a state space of k input variables and

maximum resolution of N, having a base with r
rules, the rule base itself has

$ = O(rkN)
uniform complexity. With the CRI, calculation of
a conclusion takes

g = o™y,
steps, while Mamdani's algorithm only

€é = O(rkN).
(For these results, see (2], for an introduction
to complexity etc. see e.g. [10}.) The second
algorithm is very well tractable, while the
first one is applicable only in the case of low
k.

In some industrial systems, a serious
difficulty arises. If there are several thousand
input variables, even the complexity of the very
rule base (#) becomes rather high for practical
purposes: the difficulty is in the value of r.
In an acceptably complete rule base, the number
of rules is very high: even if the number of
linguistic terms for every input variable is
bounded by L., L input combinations exist; with
arbitrary membership functions, even more. A

solution is offered by the fact that certain

areas of the state space are dominated by small
subsets of the variables. By identifying the
state of the system, attention can be reduced to
a small group of variables. If a crisp

partitioning of the state space is possible, the

original problem is reduced to several
subproblems:
P
X= v

Dx’ where D‘ n DJ =6 if i = j.

-

1

For every D1 another subset of (Xl} is dominant

Kk
(X’—‘é

\ Xi).The subset for Dl is 8 =

1 i

(Xll,...,Xlnl) (n << k), and the S-s are
usually not disjoint. For every S‘, another rule
base exists, where the number of rules is
considerably lower than in the space without
partition. The total number of all rules in is

approximately

P
r = §L ', where n << k, as stated

previously.

The complete hierarchical rule system includes
also the partitioningrules in the form "If X is
D1 then Rx"' their number can be approximated by
cp, where c is constant. The total number of
rules in the system is in the order

L x
r=cp+ YL <L
i=1

Succesful applications of a hierarchical,

structured rule system have been published by

Sugeno et al. (see e.g. [11]).

4. Fuzzy partition of the state space

In many industrial processes no partition of
X exists in the crisp sense. There are disjoint
areas of X where a certain subset of Xx—s
dominates the process, however, these do not

cover the whole X:

P
Y Di < X (< denotes proper containment).

i=1

For observations lying in

P
T=X\ v D
1=1 1
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the effect of several subgroups of variables
dominates Jointly: none of the rule bases is
applicable alone for computing the conclusion.
Because of this fact, crisp definition of (Dx}
is a rough estimation. The influence domain of a
certain .subset of variables is in reality a

fuzzy subset of X. A fuzzy partition or cover

p ~
is |y supp(Dl) = X,
wheré core(ﬁl) n core(ﬁj) = @. (Otherwise the

base is contradictory). Usually, supp(ﬁl) n
supp(ﬁj) # @, even if i # jJ. Observations in
such a system might be of two types: their
support is completely contained in a single
domain or they lie completely or partially in T,
i.e. their support is contained in at least two

domain supports.
For such an observation, both (or, in
general, all) variable subsets and sub rule

*
bases must be combined. An example is A which
overlaps with two domains in the fuzzy cover of
X = Xx...xX: D_ and D_, where the variable
1 6 2 3
subsets (XZ,X4,X5) and (Xz’xa'xs) are occuring
in the antecedent parts of the corresponding sub
rule base. So, rules in R2 have the form
"If X is A and X is A and X is
2 21 3 4 s

A then Y is B "

5k 1
where qu and Bl are fuzzy sets over X and Y,

p
*
respectively. For A , all rules from R2 and R3
are considered and so the input variable set S =
{X , X ,X ,X ,X} is used as the reduced state
2"73"74’ s e

space. In this example, S contains only one less
component than X itself, but if k 1is rather
high, the subsets have much fewer elements, so
their union S is also much less dimensional than
X. All calculations can be done in S so, that
all rules are transformed 1into S by the

cylindric extension method: If the i-th sub rule

base is described by (uU(x“,...,xlk J}, and
i

the j-th base adds the new varlables
(le ,...,le), so that (xu,...,xlk } V]
1 1
(le ,...,le } = (x51....,xSk } and
1 m S
(xu,...,x‘k } n {le {...,le } = o, the i-th
i m
base is extended to
(MU(XSI,. . .,xsk )} =
‘ ]
(m1n(u1)(x11,...,xlk ),1(xjl ,...,le
1 ]
I} =
{“11(xx1" CoX )}

i

Using this way of extension 1increases the
complexity only minimally. For the observation,
the new rule base is obtained by

R =R v Rje (subscript e stands for

S ie
cylindric extension).
The conclusion for A‘ can be obtained by any of
the suitable algorithms (as the CRI, or
Mamdani’s technique) on only R_. 4. 5.
Approximations of R: X -» Y 1} the wunited
subspaces

In the <case of very large number of

variables even the possibility of handling
complete covers is questionable. A hierarchical
rule base might be sparse in two different
senses: either the sub rule bases do not cover
the whole input state space (i.e. the union of
the supports of all fuzzy domains is a proper
subset of the state space) or the individual sub
rule bases might have "gaps" inside the given
domain. As a matter of course, the combination
of both can also occur.

For the possible approximation techniques,
especially the various types of interpolation,
see e.g. [9]. Applying the method of
cylindric extension to all’ sub rule bases
flanking the observation (in the sense of the

partial ordering introduced in [8]), including
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the case of partial overlapping, as well,.the
methoeds of rule interpolation are directly
applicable for obtaining the conclusion, and
this algorithm for the inference has a low
computational complexity, maximally 0(kd$nxl =
O(kL®) , where kmax denotes max(kx) << k.

In this way, it is possible to construct
hierarchical rule bases with sub bases only for
the typical state areas. The size of the total
information necessary to store 1is rather
reduced. For most of the observations, a not
very high number of sub bases must be united by
cylindric extension, and in this combined base,
rule approximation techniques are applied. The
dimensionality of this subspace is still much
lower than that of X, so complexity of these

calculations is still acceptable.
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