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Abstract: A dynamic-structure system is one that has
the flexibility to change the system configuration
automatically so as to operate in an optimal manner. A
conceptural model for a dynamic-structure system is
presented in this paper. In this model, the
interchangeable components of the overall system are
grouped together. Their activity levels are evaluated by
an intelligent preprocessor that is associated with the
group. A knowledge-based task distribution system
evaluates the activity levels and makes decisions as to
how the components operating below capacity should be
shared with workcells that have similar components that
are overloaded. Associated decision making can be
effected through fuzzy logic and particularly the
compositional rule of inference. A simulation example is
given to illustrate the application of dynamic structuring.

INTRODUCTION

Considerable attention has been given to the use of
decentralized or distributed control in complex,
large-scale systems [1]. When various control
functions in a large system can be ranked into
different Ievels, a hierarchical control approach may
be useful [2,3]. Also, in some situations, the
components (both hardware and software) that
perform the ranked functions could be arranged in a
hierarchical manner. Published work has been limited
to hierarchical systems which are designed to possess
fixed structures, and these structures do not change
during operation of the system. This is the case, for
example, in the systems described in [4] and [5].

A dynamic-structure system is one which has the
flexibility to change its communication and control
structure automatically so that the architecture in
which the system is integrated could be altered
without having to redesign the system. Even though
the design, analysis, implementation, control, and
operation of a fixed-structure system is usually
simpler than those of a dynamic-structure system, it
is generally less efficient and nonoptimal. For
example, if two workcells have components that could
be easily shared, it makes sense to share a component
that operates well below its capacity with a workcell

that has an overloaded component of the same type.
Such sharing would be possible only if the system
structure has the necessary flexibility to communicate
with and control the shared component regardless of
which workcell the component is associated with at a
particular instant. Underlying here are the advantages
of a dynamic-structure system [6].

Different levels of knowledge, expertise, and
intelligence may be associated with different
functions of a hierarchical control system, and
dynamic structuring will have to rely on such
knowledge. Specifically, intelligent preprocessors may
be necessary to evaluate, interpret, and transform
various types of information available within and
without the  system.  Furthermore, system
restructuring  decisions have to be made
“intelligently” through a suitable knowledge system,
by taking into consideration the available,
preprocessed information. This is the basis of
knowledge-based dynamic structuring. This paper
will describe a model for a knowledge-based
dynamic-structure system. An illustrative example
will be drawn from the fish processing industry to
indicate the utility of the model.

KNOWLEDGE-BASED HIERARCHICAL SYSTEMS
A system that has the flexibility to automatically
change its structure should possess proper control
means to provide that flexibility. Since a system of
this type has to be able to provide a variety of
different services during operation, it tends to be
complex in general. Consequently, the task of
controlling such a system would be intractable unless
the associated architecture of control and
communication is properly organized.

A layered architecture can facilitate the operation of a
complex, flexible system [7,8]. Since the higher
layers generally deal with low-resolution, imprecise,
and incomplete information, more intelligence would
be needed in the associated decision making process
[9]. In contrast, in the lower layers, as in servo loops,
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information (e.g., signals from feedback sensors [10])
is used directly, without subjecting to intelligent
preprocessing, in taking control actions. A hierarchy
of intelligence may by identified in this connection
[11].

Specifically, “Knowledge” may be interpreted as
structured  information, within the context of
computer-automated process control. Various means
such as logic, semantic networks, frames, and
production systems may be employed to represent
and process knowledge. Next, “Expertise” may be
treated as specialized knowledge, and relates to
in-depth knowledge that is needed to handle
specialized situations. At the top level in this
hierarchy rests “Intelligence” which cannot be
defined precisely, but may be interpreted as the
capacity to acquire and apply knowledge, thereby
displaying some intelligent behavior. This is a
somewhat  circular  interpretation.  Intelligent
characteristics include the ability to perceive, reason,
learn, and make inferences, particularly in imprecise,
vague, or fuzzy situations, and making use of
incomplete information. It follows that, some
intelligence is needed to gain knowledge from
information, and to gain expertise by specializing that
knowledge. This hierarchy is schematically
represented in Figure 1. This is not a strict hierarchy
because the separation of the knowledge layer and the
expertise layer is somewhat fuzzy. The intelligence
itself is fortified through the act of preprocessing of
information and knowledge, with varying degrees of
incompleteness,  imprecision,  vagueness, and
fuzziness. Preprocessing may include perception,
reasoning, learning, and inference. It is the “outward
appearance” of the hierarchical system in Figure 1,
that is considered intelligent. Associated root-level
computations would be hardly classified as intelligent.
As an example in the process automation domain,
one could model the execution of a routine task as
knowledge-based and responding to a critical
situation as expertise-based.

A MODEL FOR DYNAMIC STRUCTURING

Proper integration is crucial for efficient and
cost-effective operation of a process control system.
Since redesign of the system architecture and
re-integration of the system are costly and time
consuming, it is desirable to consider a flexible
system whose structure could be automatically
reconfigured according to  various  process
requirements.

A model for a dynamic-structure systern was
conceptually proposed in [6], and is schematical
represented in Figure 2. In this architecture, the
workcell components of the processing system are
grouped in such a manner that the functions of the
components within each group are similar and they
are interchangeable without affecting the functionality
of a workcell. In a general sense, both hardware
devices and software modules may be considered as

workcell components. Each workcell component has a
controller that manages its operation. Also, each
component has one or more sensors that will provide
the necessary information to an “Intelligent
Preprocessor” which will determine the activity leve!
of the particular component. In a fixed-structure
system, the task distribution amounts to allocating
tasks to various workcells in the system, and the
constituent components of the workcells themselves
are permanent. For a dynamic-structure system,
however, a more intelligent task distribution system
(TDS) would be needed. Here the TDS has to
routinely monitor the activity levels of the workcell
components, as provided by the corresponding
intelligent preprocessors. It will then redistribute the
constitution of the workcells by sharing some
components that operate below their design capacity
with workcells having components in the same group
that are overloaded. These restructuring decisions are
transmitted to the system restructuring controller
(SRC) which activates the necessary communication
and control links and provides the control strategies
to effect the component sharing.

The activity levels of the components in a workcell
with a given structural configuration, depends on the
process load of the workcell. If the workcell load (or
demand) changes due to reasons such as
supply-demand variations (e.g., new orders, new raw
material), the activity levels of the workcell
components will change. It follows that the load levels
of the workcells have to be provided as inputs to the
TDS, and these inputs will trigger the
decision-making process for workcell restructuring,
on the basis of the component activity levels.
Reasoning associated with the restructuring decisions
could be quite complex. For example, when more
than one overloaded component and more than one
component operating below capacity are present
within a group, there arises a so-called conflict
resolution problem. Here, the decision of which
components should be shared with which workcells
should be made by taking into consideration various
factors such as the degree of overload and
under-capacity, workspace geometry (e.g., proximity
of a component to the workcell with which it is
expected to share), ease of sharing, and the speed of
restructuring. An inteiligent (or knowledge-based)
TDS is needed for this purpose. Each context in the
decision making process could be considered fuzzy,
and the associated decisions can be determined by
applying the compositional rule of inference [12].
Analytical representation of the dynamic structuring
model may be facilitated by the formulation given
now. The activity levels A of the workcell components
may be given by

Alw, 8. ©) =F@) X S, g, ©) (1)

where ¢ = identifier for a component in a workcell; g
= identifier for the component group to which ¢
belongs; w = the set of workcells among which c is
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shared; § = sensory signals from component ¢ for
determining the activity level; F intelligent
preprocessor for a group of similar components that

infers the activity level of a component; @ = a
suitable transitional operator.
The intelligent preprocessor (£) is typically a

knowledge-based reasoning system. The associated
variables of knowledge representation could be fuzzy
and the knowledge base itself might be expressed as a
set of linguistic statements. In this case F may be
interpreted as a multidimensional membership
function [9]. The sensory signal § from the workcell
components are crisp and of high resolution. The
context that is needed by F to infer the activity level
would be higher level information of lower resolution.
For example, peak values, averages, standard
deviations, correlations, trends, and times of certain
critical values could be involved. The transitional
operator ® can be quite subjective [9] and should be
interpreted depending on the particular component
and the specific need. For example, in many
situations, ®@could be a knowledge processing
operation such as the application of the compositional
rule of inference to a fuzzy rule base.

Once the activity levels of the components are
available, an input trigger such as a change in a
workeell load should initiate the process of activity
evaluation for workcell reconfiguration. This process
may be formulated as

cw*) =RQ[DAW,g,0)] @
cEg

where w = the workcell association of component ¢
prior to reconfiguration; w* = the workcell association
of ¢ after the inferred reconfiguration; R = knowledge
system for task redistribution; and & = combinational
operation. Note that the operations implied by
equation (2) have to be performed for all components
that are overloaded and all other components that fall
into the component groups to which the overload
components belong. Again, the knowledge base
associated with the decision making process of
equation (2) could be a set of fuzzy linguistic
statements, and accordingly R could be interpreted as
a multidimensional membership function. Then the
transitional operator & would correspond to the
application of the compositional rule of inference.
The combinational operator € too is subjective and
situation-specific, and has to be performed separately
for each component group. For example, it may
constitute a simple comparison of activity levels of
the components within a group and ranking them
accordingly so as to pair say an overloaded
component with one that operates below capacity.
Finally, the new workcell configuration w* will
provide the necessary information for the SRC to
activate the necessary communication and control
links and to operate the workcells according to the
new configuration.
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EXAMPLE OF APPLICATION
An application in fish processing will be considered.
Specifically, a system consisting of subsystems such
as a fish cutting system, a grading system, and a
packaging system will be reconfigured as workcells
within a process plant, and will be implemented as a
dynamic-structure control system. There exist many
similarities in terms of hardware, software and
processes in the subsystems. For example, system
components such as sensors (including CCD
cameras), image processing systems, actuators,
grippers, and conveyors are similar. As a result, the
nature of component interfacing, signal processing,
and low-level control will be similar both in hardware
and software. This means that there exists the
prospect of sharing similar components among the
workceells so as to reduce overloading and to achieve
somewhat optimal operation.
Figure 3 presents a simulation example of dynamic
structuring. The overall processing system consists of
three workcells —- for cutting, packaging and grading,
as shown. Each workcell has common components
such as robots for fish handling and processing,
automated guided vehicles (AGVs) for the transfer of
raw fish, processed fish and waste, and vision stations
for detection, gauging and quality evaluation of
objects. The activity levels of the components are
shown as percentages of their designed capacities,
and are presented as solid bars, with the dotted
region indicating the available excess capacity. Also,
each workcell has a demand level in a given phase,
which represents the load on the workeell to achieve
the necessary productivity.
It is seen that in Phase 1, the components in all three
workcells operate below their capacities. Then due to
a drop in the supply of fish, the cutting demand drops
by 25% and similarly the grading demand drops by
25%. But an accumulation of processed fish has
occurred. Also, simultaneously a 50% increase in
orders for processed and packed fish takes place
driving up the packaging load by 50%. These result in
associated changes in the activity levels of the
workcell components, as shown by the Transition
Phase. Now the workcells need to be reconfigured for
improved operation. Possibilities of component
sharing are indicated by broken lines in the Transition
Phase. Once the reconfiguration is effected, in Phase
2, the activity levels of the components have changed,
to achieve a somewhat balanced operation under the
changed loading condition of the workeells. It is seen
that, in Phase 2, none of the components are
overloaded unlike in the Transition Phase. Also, an
AGYV has been completely released from the cutting
workcell and has been allocated to the packaging
workcell. Similarly, a robot has been completely
released from the grading workcell and has been
allocated to the packaging workceell.

ACKNOWLEDGMENTS

The work presented here is supported through grants
from the Natural Science and Engineering Research



Phase 1:

ot
Inteltigence £l g E E E ] E . E E E
R @ Perception .
Expertise e Reasoning e TR U My G e FoU1? ALY Mive Pmssgeg o RO Bana ¢ mava Auve Goumeg
® Learning K - -, 7y hEN ,"3- . =,
" jogog { 8- 5480
Intelligent Packagung _+_ Geading + .
Pr i Macrne : Machine
l‘\ U0 S .\ 00
Knowledge ) ) . )
(ntelligent
Preprocessing
I Information
Figure 1. A Hierarchy of Intelfigence i3 Pekek 1 M | daw? o thi
Load Levels AN - - i BN
of the - K .
L [na
Activity Level P
. for Y
3 Tesk Diwribution . { o . &
N o0 . N 00
>
Intelligent Inezliigent System ing Phase 2: (Restructured)
Prepracessor | » = o | Prepro Controller /H‘h—‘.

Sensory
Signals

Component-
Group r Level

Components Controllers

T

Group 1

Components .

A

Council (NSERC) of Canada and the Advanced
Systems Institute (ASI) of British Columbia. The
author appreciates the assistance received from Mr.
Jianhua Gu in preparing Figure 3.

REFERENCES

. Sandell, N., Varaiya, P., Athans, M, and Safonov,
M.,“Survey of Decentralized Control Methods for
Large Scale Systems”, [EEE Trans. on Automatic
Control, Vol.AC-23(2), pp. 108-128, 1978.

Figure 2. The Architecture of a Flexible Processing System with
Dynamic Structuring

2. Albus, J.S., McLean, C., Barbera, A., and Fitzgerald,
M.,“An Architecture for Real-Time
Sensory-Interactive Control of Robots in a

Manufacturing Environment”, Proc. 4th IFAC/IFIP
Symp. Inform. Control Problems in Manuf. Tech.,
Gaithersburg, MD, October 1982.

. Isik, C., and Meystel, A., “Decision Making at a
Level of a Hierarchical Control for Unmanned
Robot”, Proc. IEEE Int. Conf. on Robotics &
Automation, IEEE Computer Soc., Los. Angeles, CA,
Vol. 3, pp. 1772-1778, 1986.

. Hall, S.R., Crawley, E.F., and How, I.P., “Hierarchic
Control Architecture for Intelligent Structures”, J.
Guidance, Control, and Dynamics, Vol. 14(3), pp.
503-512, 1991.

. Pang, GXKH., “A Framework for Intelligent
Control”, J. Intel. Robotic Sys., Vol. 4, pp. 109-127,
1991.

B"“'

1 Vinasn 7 Bt | ALy

' Caamy

Bemana

=

Yooy

Figure 3. A Simulation Example of Dynamic Structuring

6. De Silva, C.W., “Soft Automation of Industrial
Processes”, Engineering  Applications of Artificial
Intelligence, Vol. 6(2), pp. 87-90, 1993.

De Silva, CW. and MacFarlane, A.G.J,,
“Knowledge-Based Control Structure for Robotic
Manipulators”, Proc. IFAC Workshop on  Artificial
Intelligence in Real-Time Control, Swansea, UK., pp-
143-148, September 1988.

. Saridis, G.N,, “Knowledge  Implementation
Structures of Intelligent Control Systems”, Journal of
Robotic Systems, Vol. 5, No. 4, pp. 255-268, 1988.
De Silva, C.W., "Fuzzy Information and Degree of
Resolution within the context of a Control
Hierarchy”, Proceedings of the IEEE International
Conference on Industrial Electronics, Control, and
Instrumentation, Kobe, Japan, IEEE 91CH2976-9, pp.
1590-1595, October 1991.

-De Silva, C.W., Control Sensors and Actuators,
Prentice~Hall, Englewood Cliffs, NJ, 1989.

.De Silva, C.W., “Research Laboratory for Fish
Processing Automation”, International Journal of
Robotics and Computer-Integrated Manufacturing, Vol.
9, No. 1, pp. 49-60, 1992.

-Zadeh, L.A. “Theory of Approximate Reasoning”,
Machine Intelligence, Hayes, J., et al. (eds) Vol. 9, pp.
149-194, 1979.

—1140—



