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Abstract

The construction of the rulebase of a fuzzy controller is
usually difficult because experts’ knowledge is often hard to
derive. To remedy such a problem, a number of self-learning
schemes for rulebase formulations were proposed. One of
the popular approaches is the reinforcement learning. Many
successful examples employing such an idea were proposed
and claimed to be with good results in the literature. The
purpose of this paper is to discuss and make comparisons
between some of the related work in order to provide a
better picture regarding their performances. A numerical
algorithm for the analysis of nonlinear as well as fuzzy
dynamic systems, the Cell-to-Cell Mapping, is used. The
analytical results reveals the true behavior of the learning
schemes.

1. Introduction

Since the first successful application of fuzzy control
in steam engine in 1974, fuzzy logic control has become one
of the most active and fruitful areas for research in the
applications of fuzzy set theory. Recent researches have
indicated that a complex ill-defined process can be controlled
by constructing a simple rulebase without the mathematical
model of the process. It is shown[14] that the rulebase is
the key element of a fuzzy controller. The performance of a
fuzzy controller depends entirely on the content of the
rulebase.

Generally, there are different methods for the rulebase
construction. Transferring the experts' knowledge into the
rulebase is the most direct approach. However, human
knowledge and experience are often hard to be summarized
and converted into linguistic expressions even if qualified
experts exist. Several papers have been propounded to
construct the rulebases by self-learning schemes. Michie[2}
divided the state space into several regions, namely the
"boxes". Every box behaved like a rule. The learning
machine adjusted their outputs according to the behavior of
the system. Barto and Sutton{3] adopted a similar structure
as Michie's boxes system with the Associate Search Elements
(ASE) and the Associate Critic Elements (ACE) for the
evaluation of the effect of the default control effort and the
correction of the output of each box. The controller learned
how to control a complex plant by reinforcement learning.

Anderson{4] used two neural nets to substitute the ASE and
the ACE. He called them "evaluation network" and “action
network". Lee{5] also used the scheme of reinforcement
learning. In his system, fuzzy logic rules replaced boxes to
control the plant. Only the membership function of the
output of each rule was adjusted to achieve the control
purpose. Berenji com- bined Anderson’s neural networks
with a fuzzy controller [6][11] which is actually a neural
network with five layers. Except for the above mentioned,
there are some other approaches to construct the controller
by self-learning. Lin and Lee[12] proposed a neural-
network-based fuzzy logic controller. Jang[13] also built a
self- learning fuzzy logic controller through temporal back-
propogation. The performance of the first four controllers
will be discussed in this paper, while the latest two have not
been thoroughly studied and will be left for future
discussions.

Cell-to-Cell mapping was proposed by Hsu[7-8] in
1980 and has been proved to be extremely effective for the
analysis of complex systems[15-16). It motivated us to use
the method for the performance analysis of the above-
mentioned reinforcement learning schemes. The simple
cell-to-cell mapping (SCM) method was adopted and
modified. This paper compare the testing results of Barto's,
Anderson’s, Lee's and Berenji's works and discuss their
differences. Simulations show that the performances of these
self-learning schemes are not very satisfactory. There are still
a lot of problems to be solved.

The organization of the paper is as follows: Section 2
briefly summarizes the four different rein-forcement self-
learning schemes. Section 3 provides the description of the
cell-to-cell mapping and explains what we have improved.
Section 4 performs the analysis and discusses the simulation
results. The conclusions are given in Section 5. The
references are listed at the end of this paper.

2. Some Self-learning Control Schemes

Barto and Sutton proposed a neuron-like self-
learning controller in 1983[3]. Its basic structure is shown in
Figure 1. They divided the state space imo a number of
"boxes". Sensors get the information of the plant and
transfer it to the decoder. If the plant is a cart-pole system,
the information includes pole angle, pole angular velocity,
cart position, and cart velocity. The decoder determines the
current box where the state lies at the instant. The decoded

~1028—



signal is then used to fire the box correspondingly. There is
also a weighting factor with each box. If the weight is
greater than zero, the force is 10 Nt.. Otherwise, the force
would be -10 Nt.. Initially, the weight of each box is set
randomly. There is also an external reinforcement signal r(t)
for ACE. t(t) is zero when the plant is inside the operating
region. Otherwise, it will be -1. Based on the values of r(t),
the ACE produces he internal reinforcement signal T(t) and
sends it to ASE:

P () = )+ —p(t - 1) )
where vy is called the "discount factor". In the simulations, ¥
is 0.95. To derive the value of T(t), ACE makes a prediction
p(t) of the reinforcement. There is a specific value V, for
each box in ACE. W"e let

PO =Ziy Vi()xi(2) (2
where x(t) is the output of the decoder. After the internal
reinforcement signal r(t) transferring into ASE, ASE uses it
to correct the values of W, and V.

Anderson's controller uses the same idea as Barto's
but two neural nets are used to replace ACE and ASE. One
is called the Evaluation Network (EN), and the other is
Action Network (AN). The AN plays the same role as the
ASE with the actions depending on the value of the
net-weights  summation. Signal p(t) represents the
summation of the network output. Then
1, with probabiity p(?)

9 = 0, with probabilty 1 —p() @
_, 10,ifg() =1
Push(t) = { 10, if g(1)=0 @

The EN produces the internal reinforcement.
0, start state
r(t+ 1) - v(¢, 1), failure state (5)
r(t+ D) +ywW(t, t+ 1) — v(t, 1), other
where v(t,t) is the output the EN v(t,t) is also a summation
of the weights.

Lee's controller is also similar to Barto's with 35 fuzzy
linguistic rules in the rulebase. Control forces produced by
the rules lie in [-10, 10]. Different from Barto's, the, so
called, Associate Critic Neuron (ACN) is used to produce the
internal reinforcement signal and the T is send into Associate
Learning Neuron (ALN) to correct the membership function
of the output of each rule:

Ji(®) = Hw,(D+noise(?), ),i=1,..,n  (6)
where f(t) is the location of the vertex of the triangle
membership function of output force. H(t) is a sigmoid
function which may be viewed as a dynamic normalization
function and provides a continuous output within the
range{-10, 10]. ALN only adjusts the membership fun- ction
of the action parts of the rules, while the pre-condition parts
are fixed with pre-determined fuzzy partitions. The learning
process will continue until either the controller fails to
balance the pole or the cart is out of bound. To be noted is
that, unlike in Barto's and Anderson's work, only the pole
position and velocity are discussed in Lee's work.

Figure 2 shows the structure of Berenji's controller.
AEN ( Action Evaluation Network ) plays the same role as
EN. AEN has two important factors - one is the external
reinforcement r, and the other is the rein- forcement
prediction v. AEN uses these two factors to tune the
weights and tries to keep the internal reinforcement reaching
zero. ASN is a neural-fuzzy controller with five layers.
Layer 1 has four nodes as the states in the cart-pole system.

T+ ={

Layer 2 works like the fuzzification interface. There are 14
nodes in Layer 2 totally. Every node has three adjustable
parameters. One node in Layer 3 represents a rule in the
rulebase. The node itself performs the min operations.
Layer 4 is a de- fuzzification layer. Layer 5 combines the
outputs of Layer 3 and Layer 4 and generates the controi
force. SAM ( Sto- chastic Action Modifier ) will generate
the actual force according to the internal reinforcement and
the output of ASN.

All the approaches mentioned above claimed to have
good results on their learning behavior in the way that all of
them can maintain the balance of the pole for an indefinite
period of time. However, in view of controller design, the
self-learning scheme will be of much value if the derived
controller can drive all the points in the specified stable
region of control to the set point, and not just for a few
number of specific initial points.

3. Improved Simple Cell-to-Cell Mapping

The method of cell-to-cell mapping was proposed by
Hsu in 1980[7] in an attempt to find an efficient and practical
way of determining the global behavior of strongly nonlinear
systems. The basic idea behind the cell-to-cell mapping is to
consider the state space not a continuum but rather as a
collection of large number of state cells. Then the original
dynamic behavior of the system can be treated as a finite
number of cell-to-cell mapping if one or a number of points
are chosen to represent a cell. Up to now, there are two
methods of cell mapping investigated. One is the simple
cell-to-cell mapping (SCM), and the other is the general
cell-to-cell mapping (GCM)[9][10]. GCM considers the
mapping among cells as a probability distribution and usually
attains a finer result with the cost of more computation time
and memory. For convenience, SCM is used as the base of
the analyzing tool in this paper.

In SCM, the sampling time is constant which will
sometimes cause serious problems when dealing with

complex dynamic systems. If the dynamics of the system is
fast enough, the cell mapping algorithm could choose a
distant cell as the next cell in the mapping after one period of
sampling time. As a result, the trajectory of the cell mapping
is discontinuous and some unreasonable phenomena such as
cell trap and trajectory crossing may be deduced. On the
other hand, upon slow dynamics, SCM may produce a fake
equilibrium point because the trajectory will still stay in the
same cell in the short, constant period of time.

To solve these problems, we proposed an im- proved
cell-to-cell mapping algorithm called ISCM[17]. It adopted
the same structure as the SCM except for the concept of
variable integration time. Starting from an initial cell, the
algorithm will set up a boundary passing through the centers
of all the neighboring cells. Then based on the dynamics of
the system, the trajectory will be calculated until it reaches
the boundary in a certain neighboring cell which is the goal
cell of the mapping. In this way, the cell mapping can only
generate goal cells among the neighboring cells and thus
avoid the problems of trajectory crossing, etc. The ISCM
can reveal more of the system dynamics and avoid suffering
of the same demerits as the SCM. Comparing with GCM, it
can get the same results without further refinements. It is
definitely better than SCM and save more time and memory
than GCM.

Barto's, Anderson's, and Lee's works all concentrate
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on the well-known cart-pole system. Due to the fact that
Lee's controller can only control the angle of the pole, this
paper will just compare the effects of pole angles controlling
of each controller. The position and the velocity of the cart
will be neglected. The operating range of the angle is from
-12 deg. to +12 deg, and the angular velocity from -50
deg./sec to +50 deg/sec. The size of the cell is 0.1 deg*
ldeg./sec. Total number of cells is 24000.

4. Comparisons and Simulation Results

To be analyzed by the ISCM, the coefficients of each
controller must be fixed, i.e. the learning mechanism of all the
four controllers are deactivated when the system
performances are considered to be satisfactory. Barto's and
Lee's schemes are deterministic and can be easily used for the
application of ISCM. However, both Anderson's and
Berenji's controllers involve stochastic processes and can
only be modified to serve our purpose. There is a random
number generator for determining the output of the
controller in Anderson's work. The scheme compares the
random number in [0,1] with the prediction p(t). The output

force is +10 Nt. if the random number is smaller than p(t) and
-10 Nt. vice versa. To comply with the structure of the
ISCM, the generated random number in Anderson's work is
set to be 0.5. If p(t) is greater than 0.5, the output force
would be +10 Nt. Otherwise, the output force would be -10
Nt. The modified scheme can be viewed as an averaging
approximation of the original one and, in the limiting case,
Anderson's scheme should be converging to the modified one
if the learning is successful and convergent. Similar situation
applies in Berenji's case. The stochastic action modifier in
Berenji's controller is eliminated after the training is
completed.

The above four self-learning controllers are designed
to keep on learning until the failure signal appears and are
not aimed for the constructions of stand-alone controllers.
However, in view of controller design, it is not acceptable to
have a controller which is, in a sense, unpredictable.
Therefore, we managed to evaluate the four controllers by
eliminating the learning mechanisms after successfully com-
pleting 500,000 time steps. The controllers under evalu-
ations are somehow different from what they really were.

Simulation results are shown in the following figures.
Figures 3 to 6 show the regions of convergence for Barto
and Sutton's, Anderson's, Lee's, and Berenji and Khedkar's
controllers respectively. In the simulation, the viewing area
reveal the adimttable control space ranging from 12 deg. to
-12 deg. and 50 deg./sec and -50 deg./sec. There are only
two groups of cells in the cell maps of the first three control
systems where group 1 is for the "sink cell” and group 2 is
for the convergent cells. (The sink cell means the cell which
belongs to some trajectory going toward the outside region.)

In figure 3(Barto's case), there is a limit cycle for the
cells in group 2, which is around the origin of the
angle-velocity plane which means the controller does not
keep the pole stably balanced and indulges in oscillations.
Actually, the system behaves like a Bang-Bang control
system which can balance the pole stay in the limiting region
but excludes the reasonable equilibrium point because limit
cycle locates outside the central region.

The cell map from Anderson's scheme shows some
strange phenomena. There are 39 groups totally in its cell
map. In the learning procedure, we can see that Anderson's

controller does not have a consistent behavior. The same
p(t) associated with one state could have two different
output forces at different time instants. The random process
in Anderson's approach helps the searching in the state space
for proper control forces. However, the approach should be
modified in the line of the simulated anealing so that the
learning can converge in the long run.  Otherwise, the
stochastic behavior will continue and the scheme will not be
able to derive a controller with consistent performances. We
speculate that the 39 groups found in the cell map indicating
the transient and random behavior of Anderson's control
scheme. We also find all groups except group 1 have no
equilibrium point and have only limit cycles. Group 2 has
more cells than the other groups and is the dominant one
relatively.

Lee's controller seems the most normal one in figure
5. The cell map appears to have only one equilibrium point.
There is no limit cycle in group 2. The equilibrium point is
the origin. However, the demerit of the controller is that the
controllable area is small. The state outsicde the controllable
region would be out of control. In simulations, we also
observed that there is a "path" leading outside of the
controllable area to the initial state. This shows that the
initial state will have influence on the cell map, i.e. Lee's
controller is “initial state dependent”.

Generally speaking, Berenji's controller has the best
performance. It seems to be able to control the majority of
the state space (Figure 8). However, Berenji's controller has
a serious problem that it can not maintain the pole and the
cart in steady states at the same time. From the simulations,
we find that it will oscillate seriously. Oscillations also
happen in the learning process and sometimes the controller
would diverge. We can find the stochastic elements affect
the controller. Barto's and Lee's works exclude such random
modifier, so their behaviors are more reasonable. If we need
a stable controller, we should eliminate this stochastic
behavior at first.

5. Conclusions

By comparison of these four controllers, it is obvious
that although all of them claimed to be able to control a
cart-pole system. None of them can be considered to be a
good controller design methodology because none can
guarantee a reasonably large, compact region of stability.
Actually, the region of controllable states is far smaller than
we speculated.

Although the self-learning schemes discussed above
have their problems. They do suggest a new way to establish
the control rulebase under insufficient informations. In fact,
there are many new methods proposed after them. It has
also been shown that the ISCM can be used to provide some
ideas about the dynamic behavior of a complex system.
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