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Abstract

In this paper, we describe hardware architecture of fuzzy processors for
reasoning involving fuzzy control "heuristics”. This we believe will lead
to fuzzy systems that are closer to the way humans process domain
knowledge for decision making. One noticeable beneficial effect based on
our notion of fuzzy heuristics is the significantly reduced number of
rules required.

1. Introduction

Very often, humans make use of heuristic rules to accomplish tasks
with seemingly little effort. To express such rules, it is more convenient
and intuitive to make use of vague linguistic terms. These linguistic
terms can be conveniently represented as fuzzy sets. Ever since linguistic
algorithm was successfully applied in the control of industrial process
[5], the use of fuzzy logic control has proliferated. Such an approach is
already the basis of many consumer products that make use of fuzzy
rule-based control methodology.

It is well established that humans solve problems based on heuristics or
rules of thumb. One characteristic feature of heuristic rules in the sense
of humans’ reasoning is that usnally, the number of rules used to solve a
particular problem is relatively small. Another feature of the rules tends
to be generality. Each rule generalizes situations or circumstances into a
form of linguistic association. For example, the statement "people who
are obese, smoke, drink and do not exercise have high risk of suffering
from heart attack”. Here. we associate the class of people with high risk
of heart attack to their physique and unhealthy lifestyle. Although not
explicitly stated, such a rule may further imply that people who are
slim, do not smoke and drink will have a low risk of heart attack. It
seems that humans are able to work around with very few rules, without
sacrificing their capability in problem-solving. However, this may be
arguable for problem domains which require highly specialized
knowledge. In our view, most fuzzy systems although successful in
tackling the problems they are designed for. have not been able to
capture the essence of "heuristics" in the sense of human oriented
reasoning.

Existing applicaticons or products on the implementation of silicon-based
fuzzy reasoning usually rely on some form of microprocessor system
based algorithms or special hardware architectures to replicate the exact
fuzzy inference reasoning mechanisms, This may prove indispensable in
control applications that require real-time operations where the domain
rules are well-tuned. However, it is observed that most successful
demonstration of fuzzy control systems rely on a large number of rules.
In the true sense of fuzzy heuristics, we believe that this should not be
so. To clarify this further and to ease further discussion, we define
domain-specific fuzzy heuristics to be rules of thumb with the following
salient characteristics:

- relatively few simple and abstract rules;
- with no precise but rather subjective definitions of concepts;
- not affected by nuances of humans’ emotion.

In this paper. we describe architectures of fuzzy processors which are
tlexible to handle reasoning involving fuzzy heuristics that may require

complex inferencing method. We will first give a brief theoretical
overview before describing the simplified architecture of the fuzzy
processor. Methods of incorporating parallelism to enhance the speed of
inference will be briefly discussed. To demonstrate the approach
comprehensively, we will make use of the practical example of a cart-
pole balancing system based on the notion of fuzzy heuristics as
mentioned earlier.

2. Theoretical Overview

Fuzzy control algorithms can be specified as if-then rules which may
consists of one or more left-hand side antecedents and a right-hand side
consequent. For example, a two-antecedent rule can be written as "if (a
and b) then ¢". The implied fuzzy meaning of rules are in the premises a,
b and ¢ which can be implicitly represented as fuzzy sets 4, B can C in
some universe U, V and W respectively. If ¢’ and b’ denote two known
premises (or facts) similar to @ and b respectively, the rule of inference
for computing ¢’ can be written as follows {8):

C'=A0A->C)AaB 0B () 1)

where C’ denotes the deduced fuzzy set and A" or B' are fuzzy sets
denoting some known facts. In the above expression, "o0" is used to
denote max-min composition, "A" denotes min operation and "—"
denotes the bivariate relation also known as fuzzy implication. Except
for the "—" operation, we feel that there is general agreement towards
the other operators. Many fuzzy processors, for example {7], adopt the
following relation to compute the conditional proposition or if-then

rule:
Rasc=AxC 2

where A and C represent two fuzzy sets and "x" denotes Cartesian
product. R4, can be referred to as a fuzzy implicational relation. To
compute the conclusion based on such a relation, the max-min
composition described by equation (1) can be written as follows:

Hetwr) = vy e A (i) A pa(u)) A BC(wi)] A
[Vve VB (V) A UB(vi)) A HC(wg)] 3

The symbol pa(u; ) denotes the membership value of element u; in the
universe U as defined by the fuzzy set A. This method of inference is not
difficult to implement in view of the fact that the computations involved
can be realized by simple min and max functional blocks which is easily
achieved in hardware.

For a fuzzy system of n rules, we can represent it symbolically as
=@ (c/' 02’ cn) (4

where ¢;' denotes the conclusion derived by firing the i rule computed
from equation (1) and @ denotes the aggregation operator. The mode of
aggregation dictates how the consequents from firing all the » rules are
combined to obtain the final conclusion. Here again, to our knowledge
as reflected by the frequent usage of it, there appears to be general
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tendency towards a disjunctive mode of aggregation which can be easily
realized by means of a max function block. An obvious alternative
would be a conjunctive mode of aggregation realizable by a min function
block. One should realize that in fuzzy reasoning, many aggregating
operations are possible.

3. Architecture of Fuzzy Processor

In section 2, we mentioned that the relation R4 _,¢ as in equation (2)

can be realized by means of a min function block. Because of ils
simplicity, it is practical for on-chip computation of the fozzy
implication. However, if we were to adopt the following relation as
described in Mizumoto [6}:

RALC=AXW<g> UXCYA(—AXW <g>U x () &)
where <g> is defined as:

1 as<B
a<g>p= ©)
b a>f

It is clear that on-chip computation of the fuzzy implication may
become significantly more complicated. An alternative would be to pre-
compute the relation and store it as matrices in the processor's memory
[4]. With the pre-computed matrices, the general block architecture of
the processor is as shown in Figure 1. Both the min and max blocks
compute the max-min composition for every rule. The lower max/min
block realizes the aggregation of conclusions derived from firing all the
rules. We distinguish a fuzzy register as register with storage for a fuzzy
set. A normal register stores 4 bits membership value.

It is clear that the hardware configuration is not affected by the mode of
implication used. Another consideration is the universe size of the fuzzy
concepts. The capability of fuzzy reasoning is not sacrificed by
compelling designers to define fuzzy concepts of a uniform universe
size. From a hardware point of view, this can be easily achieved by
loadable counters which can be presetted prior to inferencing.

Alternatively, one can achieve the flexibility by dynamically setting the
counters as and when the universe size changes. This can be done by
incorporating a header declaration with information about the number of
rules, the universe size of the consequent, the number of antecedents
followed by the universe size of each of the antecedents. Subsequently,
before each matrix is accessed, an antecedent identifier followed by a flag
to declare the logical mode to be used in combining with the next
matrix. This can be best illustrated by means of the example in the next
section where the so called relation matrices are shown in Table 1.

So far, our architectural descriptions have not included fuzzification of
input and defuzzification of output. It is assumed that inputs are fuzzified
and loaded onto a fuzzy input register to be used for inferencing. The
process of defuzzification is concurrent with the inferencing process. As
and when the membership value of the consequent is derived by the
inferencing unit, the intermediate terms that are necessary for
defuzzification are computed and stored in a fuzzy register. When the
final inferencing step is completed, the intermediate terms are used to
obtain the final defuzzified outcome.

4. Cart-Pole Balancing Problem

In this section, we describe the practical problem of a control system
that make use of our notion of control heuristics. This problem is
commonly referred to as the inverted pendolum problem. To closely
reflect on practical reality, we refer to it as the cart-pole system. The cart
is rigidly hinged such that it can fall either to the left for a negative 8 or
right for a positive 8. To counter a positive angle of the pole, a
movement towards the right is required to bring the pole to a vertical

position. Likewise, a movement to the left is needed to compensate for a
negative angle. In addition to 6, the angular velocity €’ is also used to
determine the direction of movement of the cart.

The inverted pendulum problem is a common example to illustrate
control algorithms including fuzzy control. Many studies using fuzzy
controllers (for example [1], [2] and [3]) make use of 9 or more rules. To
our knowledge, no formal method exists for determining the number of
rules or fuzzy linguistic values. For example, how do we know that the
linguistic variable angle should take on the linguistic values
positive_big, positive_small, zero, negative_small and negative_big.
This being so, designers of fuzzy controllers usually resort to
partitioning of the universe to manageable range to be assigned with a
fuzzy term. This is probably done intuitively or based on precedence set
by other successful fuzzy control algorithms. It is not difficult to notice
that as the number of linguistic values increases, the number of rules
tend to increase significantly making it tedious to achieve a functional
controller. This is (although arguable) tantamount to exhaustive
declaration of all possible associations of linguistic values of the
antecedents and that of the consequent.

To illustrate the notion of heuristics advocated in this paper, we imagine
intuitively the rules bome in the human mind to solve this problem.
Although experts may use different set of rules to solve similar problem
just as effectively, it is likely that in this case, 2 rules may be sufficient
to generalize the cart-pole balancing system. Consider the following
rules:

if (angle and angular velocity are positive)
then (move cart 1o the right)

else_and

if (angle and angular velocity are negative)

then (move cart to the left)

The above rules generalizes the situation when force needs to be applied
to the cart to stop the pole from falling. The degree of movement of the
cart can be realized by supplying the proper torque to the motor.

Figure 2 shows the graphical representation of the fuzzy terms negative
and positive for angle (8), angular velocity (") and force (F). With these
definitions of the fuzzy terms, 4 fuzzy relation matrices can be generated
based on the relation described by equations (5) and (6) with the
necessary declarations defined earlier in the previous section. Two of the
matrices are shown in Table 1 for illustration.

5. Parallelism

To enhance the computation speed, it is possible to incorporate
parallelism in the processor. If we conservatively estimate that each min
or max block requires 200 gates and each register is realized using 40
gates (assuming that membership is coded as 4 bits value and each bit of
the register needs 10 gates), the inference unit shown in Figure | can be
realized with less than 1000 gates. Hence for a VLSI chip of 50,000
gates capacity, a reasonable estimate will suggest that we can
accommodate more than 48 inference units to allow for simultaneous
processing of 48 relation matrices. We refer to this as rule parallelism
since all the rules are fired in a parallel manner. This is depicted in
Figure 3 showing N-rules parallelism. The symbols Ry, Rz, ..., RN
represent pre computed relation matrices.

Another alternative is to incorporate parallelism during the firing of each
rule. For example, if the matrix is MxN where M is the antecedent's
universe size and N corresponds to the consequent’s universe size, we can
make use of M min blocks followed by (N-1) max blocks to achieve the
max-min composition. We refer to this as max-min parallelism. Figure
4 shows the general block architecture to illustrate max-min parallelism.
The symbols u;y, ..., #tin, denote membership values of a column of the
matrix. Complete processing of a matrix occurs when i equals N.
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6. Conclusions

In this paper, we have discussed the issue of hardware architecture for
general purpose fuzzy processors which is independent of the inference
method used. Although there are many successful fuzzy controllers to
show that simple inference method of the Mamdani [§] type is sufficient
to tackle a myriad of control problems, we contend that real-life
problems may demand more complicated inference method. This may
result in far less number of rules than it ordinarily would have. We made
used of an inverted pendulum control problem to illustrate this point.
The motivation for this paper is to describe the architecture of what we
perceive as general purpose fuzzy processors realizable on a VLSI chip.
If memory is incorporated in the fuzzy processor, the simple yet
powerful architecture allows for single chip fuzzy reasoning system
somewhat similar and analogous to a micro controller. Although the
architectures described demand a greater number of max or min
computations, it is feasible to enhance the inference speed by re-
configuring the processor to incorporate rule parallelism or max-min
parallelism.
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Figure 1: Block architecture of an inference unit.
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Figure 2 : Memberships of fuzzy terms.
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Figure 3: Rule paratlelism.




Figure 4: Max-min parallelism.
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1.01.01.01.01.01.00.8 0.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.20.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
0.00.00.0 0.00.00.0 1.0 0.6 0.4 0.2 0.0
0.00.00.00.00.00.0 0.2 0.6 0.4 0.2 0.0
0.00.00.00.00.00.00.20.40.40.20.0
0.00.00.00.00.00.0 0.2 0.4 0.6 0.2 0.0
0.00.00.00.00.00.00.20.40.6 1.0 0.0
0.00.00.00.00.00.00.2040.6081.0
~2A

1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.20.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
1.01.01.01.01.01.00.80.6 0.4 0.20.0
1.01.01.01.01.01.00.80.6 0.4 0.2 0.0
0.00.00.00.00.00.0 1.00.6 0.4 0.2 0.0
0.00.00.00.00.00.00.20.6 0.4 0.20.0
0.00.00.00.00.00.00.20.40.40.20.0
0.00.00.00.00.00.00.20.40.6 0.20.0
0.00.00.00.00.00.00.20.4 0.6 1.00.0
000.00.00.00.0000.20406081.0

|
Table 1: implicationat relation matrices.
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