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ABSTRACT

A new rotor control scheme, the isotropic control of
amsol:rop1c rotor bearing system in complex state space,
is proposed, which utilizes the concepts on the eigen-
structure of the isotropic rotor system. Then the control
scheme is applied to an active magnetic bearing system
and the control performance is investigated in relation to
control energy, transient response, and unbalance
response. In particular, it is shown that the proposed
method is efficient for control of unbalance response.

1. INTRODUCTION

Complex notation has been commonly adopted in
dynamic analysis of a rotor bearing system due to the
notational convenience and clear physical interpretation,
and the dynamic analysis[1,2] and control of isotropic
rotor bearing system([3,4] in complex space has been well
developed. In this work, an isotropic control of
anisotropic rotor bearing system in complex state space
is proposed, which utilizes the concepts on the
eigenstructure of the isotropic rotor system[5]. Isotropic
controller design in complex state space is essentially
composed of two steps. Firstly system is decomposed
into isotropic and anisotropic parts, and direct cancelling
control of the system anisotropy is performed. Secondly
an isotropic control scheme such as the optimal control in
complex domain[3] and the optimal pole assignment into
the specified regions is applied to the resulting isotropic
system{4]. Advantages of the proposed method are that
the controlled system always retains isotropic
eigenstructure, leading to circular whirling due to
unbalance response[1] and the controller design is more
comprehensive and simpler.

In order to demonstrate the performance of the
proposed method, the control of active magnetic bearing
system[6] is investigated in relation to control energy,
and transient and unbalance responses.
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2. ROTOR BEARING SYSTEM

* T e VAT -0 EA o)A TAE (FHY)
-101-

The equation of motion of a multi-degree-of-freedom
rotor bearing system may be written as[1]

Mi+Cq+Kq=f 'e))
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Here M, C, K are the 2nx2n mass, damping including
gyroscopic effect, and stiffness matrices, and y (z) and 1,
(f,) are the n-dimensional y-(z-) directional dlsplaccmem
and force vectors.

Assuming that the rotor is axisymmetric and
introducing complex notations such that p =y + jz and
g =f, + jf.. we can rewrite Eq.(1) as

where

M p+C.p+Csp+K p+K,p=¢g )
where
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¢ 2 T3
Cc,. ~-C C,+C
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Here j is the imaginary number and '-' denotes the
complex conjugate. In Eq.(2), the nxn complex matrices
M, C, K_ represent the isotropic properties of the rotor
bearing system whereas the nxn complex matrices C,, K,
represent the anisotropic properties of bearings.



3. CONTROL OF ROTOR BEARING SYSTEM

3.1 Conventional Optimal Control

The state space form of Eq.(1) can be written, on the
assumption of the positive definiteness of mass matrix
M, as

x=Ax+Bu 4)
where

L e o2 ) =l

Here A is the real valued 4nx4n system matrix and x is

the 4nx! state vector. Consider the quadratic
performance index given by

J= Jm(xTQx + uTRu) dt (5)
0

where Q and R are the positive semidefinite and positive
definite weighting matrices, respectively. Then solution
to the minimization of J is the optimal control law given
by

u=-R'B"Px (6)

where P is the solution of the algebraic matrix Riccati
equation

PA+ATP-PBRB'P+Q=0. ©)

Here the positive definite solution matrix P always exists
and the controlled system is asymptotically stable, if
[A.B] is controllable and {A,D] is completely observable,
where D is any matrix such that DD™ = Q[7]. As the
result, optimal control gain matrix, K, can be written as

Kop

—IpT
. =[Kp,, Kdo]s R7'B'P ®)
where K, and K,, are the proportional and derivative
gain matrices. From Eqs.(6) and (8), control force vector
can be written using the feedback gain matrices as

feu=—{Kpua+ K} ©)

Substituting Eq.(9) into Eq.(1), we can write the
controlled system as

Mij+[C+K,,o]¢j+|:K+Kpo]q=fe (10)

where f, is the external force vector.

In general, conventional optimal controlled rotor
bearing system (10) retains the characteristics of
uncontrolled system. Therefore if the original system is
anisotropic, controlled system is also likely to be
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anisotropic, leading to the backward whirling in
unbalance response.

3.2 Isotropic Optimal Control in Complex State Space

The essence of the isotropic optimal control of rotor
bearing system in complex domain is that the control
efforts is twofold. The first part of the control action is
solely devoted to make the system isotropic and then the
second part of control action is applied to the resulting
isotropic system, which utilizes an optimal control in
complex domain. Complex control force g in Eq.(2) can
be decomposed into two parts as

£=8+84 an
where

ga=CsP+K4P (12)

and g, is determined from the equation of motion
associated with the isotropic system resulting from the
control action of g, i..

Mp+Cp+K.p=8. 13
and then the optimal controller in complex state space is
to be designed.

The state space form of Eq.(13) is

X, =A.x +Bu, (14)
where

0 1 0 p}
A = , B.= L x. =9 .=
‘ [—M;’Kc -M;’cj ‘ {Mz‘} ‘ {,, Tk

and A, is the 2nx2n complex system matrix and x, is the
2nxl complex state vector. Consider the quadratic
performance index in complex domain given by

J.= Jlo (x:QCxC +u:RCuC) dt (15)

where @, and R are the positive semidefinite and
positive definite Hermitian matrices, respectively, and *'
denotes the conjugate transpose. Then the solution to the
minimization of J, is the complex optimal control law
given by

U= —R;IB:Per = —[Kpc ch]xc (16)

where the positive definite Hermitian matrix P, is the
solution of a complex valued algebraic Riccati equation

PA +AP.-PBRI!BP+0. =0 (7

Form Eq.(16), the complex control force vector becomes,
using feedback gain matrix,

gczuc=—{Kpcp+chpZ} (18)



and the final control law is the superposition of the two
control actions in Egs. (12) and (18), i.e.

8=8 +gA = ‘{Kpcp+chp}+{CAﬁ+KAﬁ} (19)

The controlled system becomes then

Mep+[CorKalp+| K+ Ky Jp=2. QD)

where g, is the external force.

Unlike the conventional optimal control, the isotropic
optimal control ensures that the controlled system
remains always isotropic, leading to circular whirling due
to unbalance response. Since the order of the matrices
treated in the complex domain approach is half of that in
the real approach, the system analysis and controller
design is more comprehensive and simpler. In real
application of this control scheme, however, some
cautions are necessary for good system performance such
that the total control gain matrix in real domain must be
at least positive semidefinite, if not, some control energy
may be consumed to degrade the control performance.

4. APPLICATION TO ACTIVE MAGNETIC
BEARING SYSTEM

The equation of motion for an axisymmetric rigid rotor-
active magnetic bearing system shown in Figure 1 can be
written, using complex notations, as

Mp+Cp+K.p+Kyp=Kii @1)
where
M _[ mlzz +id m1112 _id]
¢ . 2, .
mIIIz—ld ml, +ld

P Y Y
C=—j.Ql[ ]
‘ Pl-1 1
ol 2] fe 2]
K, 0
ol 4
0 K,
pz{)ﬁ +J:21}’ l-:{f'yﬁ!:l:u}
Y2 tJz; ly2+ﬂzZ
T o
b.
1,=%, 12=%, b, = b, +b,

1 1
K10=°2'(Ky1+K21)' K1A=5(Ky1‘ zl)

and

1
Kos = _(KyZ —Kzz)

1
K20=5(Ky2 +K22)r 3
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Fig. 1 Active magnetic bearing system.

Here m, 1, and /, denote the mass, the diametral and the
polar mass moment of inertia of the rotor respectively, b,
and b, are the distances of two magnetic bearings from
the mass center of the rotor, €2 is the rotating speed of the
rotor, K, and K, are the current stiffnesses of magnetic
bearings, and K, i, g=y,,5,2,2, are the negative
stiffness of the uncontrolled magnetic bearings and the
control current of each magnet, respectively.

Note that the open loop system (21) is inherently
unstable by the negative stiffness K, which is generated
by attractive magnetic force

Jo=—Ka+ Ky,  q=yny212, (22)
so that the stabilization control is always required.
Controller of magnetic bearing can be analog, digital or
hybrid types. In this example, we select a hybrid type
controller. First, stabilizing control using four single-axis
analog PD control is performed. Next, coupled 4-d.o.f.
digital controller is designed for the stabilized system
using the proposed isotropic control method.

The parameter values used in this illustrative example
are as follows :

m=9.41kg, 1=0.00927, I=0.128kg-m’
b=0.159, b,=0.118m, £2=12000rpm
{K,}={-5.5,-5.0,-4.5,-4.0)" x 10° N/m
{K,,}={480, 460, 480, 460}" N/A

And the controlled stiffness and damping by the
decoupled analog controller are

K ,=diag[9.6, 9.2, 9.6, 9.2] x 10° N/m
C,=diag[480, 460, 480, 460] N s/m.

Here the stabilized bearing parameters can be rewritten
in complex space as

c <[ 480 0 ]+j[-152 12 ] Nom

0 460 152 -152
46 0 05 0

KC=[ <105, K =[ ]xl(f N
0 47 =l o0 05 /m

First, the conventional optimal control is performed
using the procedure in section 3.1 with



TABLE 1 Eigenvalues of Magnetic Bearing System.

Mode Original Conven. Isotropic
1B | -45.684283.1j | -215.44346.3j | -210.4-352.4j
1F | -48.411315.2j | -206.81£370.0j | -211.5+363.8j
2B | -67.48+336.8j | -279.04412.6j | -276.6-414.4j
2F | -83.284425.9j | -281.44495.6] | -283.4+494.1j

TABLE 2 Eigenvectors of Controlled Systems.

Mode 1B IF 2B 2F
Conventional Optimal Control
¥y, 1.00 1.00 1.00 1.00

¥, |3.317.124j
z, |-302%.160j 0.963%1.77j

0.470£1.06j -.263F.022j -4828+.089]
-107+701j -2368¥1.35j

z, |-289+.805j 2.2014.54j 0.147+.160j 0.165+.589j
Isotropic Optimal Control

Y, 1.00 1.00 1.00 1.00

y, [3.93+1.67) 1.97+.372j -245+.080j -.461+.064j

z, | 4 - J

z, | 1.67-3.93j 0.372-1.97j 0.080+.245j 0.064+.461j

0 = diag[10, 107, 107, 107, 4, 4, 4, 4]
R =diag[1,1,1, 1.

Secondly, the isotropic optimal control law is calculated
with

Q. = diag[10’, 107, 4, 4]
R, = diag[1, 1].

The eigenvalues of the uncontrolled and controlled
systems are listed in Table 1. It shows that both
controlled systems have similar eigenvalues and the
control forces act mainly for increasing damping. Table 2
shows the eigenvectors associated with the conventional
and isotropic optimal controlled systems. It shows that
the eigenstructure of the conventional optimal system is
not isotropic since the relations, such as z,=-fy, and z,=-
jy,» do not hold, unlike the isotropic optimal controlled
system.

The typical transient responses and control forces are
depicted in Figures 2 and 3 for the conventional and
isotropic optimal controls, respectively. The performance
indices calculated for the conventional optimal control
are J(x)=6.81x10"", J(1)=21.2 and those for the isotropic
optimal control are J(x)=6.79x10", J(1)=21.4. These
results indicate that both controlled systems have very
similar characteristics, but one method is slightly better
in response performance but worse in control energy than
the other.

Figures 4 and 5 show unbalance responses and control
forces of each bearing. In many practical rotor bearing
systems, the major whirl radius and maximum control
force are the important factors to be minimized. Table 3
shows the forward and backward circular whirl radii, the
major whirl radii, and the maximum control forces of

each bearing at the rotating speed of £2= 3600 rpm.
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Fig. 2 Transient responses and control forces for
conventional optimal control: q(0) = {100, 0, 0,

100} um, G(©) = {0, 0.05, -0.05, 0} um.
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Fig. 3 Transient responses and control forces for
isotropic control: p(0) = {100, 100j} um, p(0) =
{-0.05j, 0.05} um.
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Fig. 4 Unbalance response(a) and control force(b) at
bearing-1 for e =20um £0°, ¢,=20um Z£90°, Q=

3600rpm:
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Fig. 5 Unbalance response(a) and control force(b) at
bearing-2 for e,=20um Z£0°, €,=20um £90°, Q=
3600rpm:

Isotropic control , ====- Conventional control
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TABLE 3 Whi 1 radii and control forces for unbalance
response.
* Bearing-1/ Bearing-2

Response Whirl radius, pm Control force, N
Comp. Conven.  Isotropic Conven.  Isotropic

Forward | 14.89/14.51 14.93/14.53 1 9.29/11.18 9.293/11.16
Backward| 0.627/0.552 0/0 0.57/0.690 0.747/0.727
Major |15.52/15.06 14.93/14.53| 9.86/11.87 10.04/11.90

0 3000 6000 9000 12000
Speed, rpm
(a) Major whirl radius
50
40
= a0+
Q
£
= 20 -
10 +
0 1 1 1
0 3000 6000 9000 12000

Speed, rpm
(b) Maximum control force

Fig. 6 Major whirl radius and maximum control force of
magnetic bearing for e,=20um<0°, ¢,=20um£90°

In isotropic optimal controlled systems, unbalance
response is characterized by a forward synchronous
circular whirl; there exists no backward whirling
component. Thus the major whirl radii of isotropic
optimal controlled systems tend to be smaller than those
of conventional optimal controlled systems. Figure 6
shows the major whirl radius and the maximum control
force at each bearing for unbalance of e, = 20um.20° and
e, = 20um.90, as the rotational speed is varied. Figure
7 is the plot for the backward and forward components of
the unbalance response and control force. Figures 5, 6
and 7 clearly indicate that the major whirl radius remains
to be smaller for the isotropic optimal control than the
conventional optimal control as the rotational speed
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Fig. 7 Forward and backward components of whirls and

control forces for e,=20um.20°, e,=20um .£90°;
i80.-1, =—===con-1,— === is0,-2, —=--=con.-2.

varies. In addition, the maximum required control force
for the isotropic optimal control also tends to be slightly
less than that for the conventional optimal control except
over the low rotational speed range. This is mainly due to
the fact that, in the isotropic optimal control, the
backward whirling component is eliminated by changing
the phase and/or radius of backward control force
component. The phase shift alone, unlike the radius
change, does not affect the maximum control force.

5. CONCLUSION

Isotropic control of anisotropic rotor bearing system in
complex state space is proposed, which assigns isotropic
eigenstructure to the controlled system. The isotropic
optimal control scheme is applied to an active magnetic
bearing system and the control performance is compared
with the conventional optimal control method. It can be
concluded that the isotropic optimal control method,
which essentially eliminates the backward unbalance
response component, is more efficient than the
conventional optimal control in that it gives smaller
major whirl radius and yet it often requires less control
effort.
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