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ABSTRACT

A mathematical model has been developed far the simulation of static
stability of agricultural tractors. The model was based on Reichmann’s model but
modified to improve its shortcomings for practical applications. Two examples of
model simulation were presented and showed its usefulness in evaluating the
control and stability loss boundaries.
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INTRODUCTION

Stability is one of the primary factors limiting work performance or field
capacity of agricultural tractors. Particularly, on sloping grounds stability
determines safety and, in many cases, even their productivity.

Traditionally, tractor stability has been concerned mostly with overturns:
either rearward or sideways. The stability defining the likelihood of rearward
overturning is called longitudinal stability and the lateral stability defines the
likelihood of sideways overturns. Both of these stabilities are based on the
concept that if wheels on the same side about tipping axis are off the ground the
tractor loses its stability and overturns with respect to that tipping axis.
Therefore, any factors causing the wheel to lose the contact with the ground are
considered tending to decrease the stability.

Most widely used method for evaluating the criteria of such overturning
stabilities has been the moment equation or phase plane analysis. Stability
analysis by the moment equation is simple and straight forward, but should take
into account all the factors, both statically and dynamically, generating the
moments about overturning axis (Goering at al.(1967) and Smith et al.(1972)).
Phase plane analysis, however, determines the stability indirectly by plotting a
phase plane plot. The phase piane plot depicts the relationship between the
tipping velocity and the angle of tip and it shows that in unstable or overturning
conditions the tipping velocity attaining a peak value does not return to zero as
the angle of tip increases (Larson et al.(1971) and Mitchell et al.(1972)). The
phase plane approach, thus, separates the plane into two regions: safe and unsafe.
This is particularly useful for developing stability criteria in dynamic conditions.

A concept of stability, developed in the European countries, defines the
stability by the interacting forces at the wheel-ground interface without any
reference to the longitudinal or lateral stabilities. This concept is that the loss of
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wheel-ground adhesion force limits the stability of tractor rather than its likelihood
of any actual overturns. Therefore, with this approach, tractor stability is
expressed as control loss when the wheel force on the ground plane is no longer
sufficient to maintain the static equilibrium and as stability loss when the radial
wheel farce becomes zero.

By applying the concept of control and stability losses, the work reported in
this paper was intended to develop a mathematical model for tractor stability
simulation. The model was ariginally developed by Reichmann(1972) and used
lately by Spencer(1978), but has been considered inappropriate in applications for
simulation purposes because the reference coordinate system used in the modeling
is uncommon in most vehicle dynamics studies. In addition, the parameters,
heading and slope angles, by which the original model describes the attitude of a
tractor on sloping lands seem less advantageous than the angles of pitch and roll
in experimental or practical applications. Improvement of these two
inappropriateness were major modifications made from the original model.

DEVELOPMENT OF STABILITY MODEL
Notations
Notations used in the development of stability model were defined as
follows (Fig. 1):

X-Y-Z . inertia coordinate system fixed in space.

X-y-z . reference coordinate system fixed in tractor body with
its origin at the mass center of tractor, and its
positive x, y, and z axis directions as shown in Fig.
1. All the vectors, defined hereafter, are expressed
with respect to this coordinate system unless stated

otherwise.

i, k : unit vectors in the directions of positive x, y and z
axes, respectively.

CG. : mass center of tractor.

Gi : mass center of the front axle assembly.

Gz : mass center of tractor excluding the front axle
assembly.

abocd : ground contact points of the left front, right front, left

rear, and right rear wheels, respectively.

P . drawbar hitch point.

h . front axle hinge point.

5,' BT E d : position vectors from C.G. to a, b, ¢, and d
respectively [L].

D : position vector from C.G. to p, [L].

h : position vector from C.G. to h, [L].

's_I, S2 : position vectors from C.G. to (& and Gg respectively
Ll

P . unit vector representing hinge axis of the front axle,

Ll
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Fy, F. Fg : force vectors acting at a, b, ¢, and d, respectively, [F].
: force vector of drawbar loading acting at p, [Fl.

Wi, W3 : force vectors representing weights of the front axle

assembly and tractor excluding the front axle

respectively, [F].

e e

w : force vector representing total weight of tractor, [F].
] : pitch angle.

¢ : roll angle.

U . frictional coefficient.

Basic Assumptions

The control and stability loss concept can be applied most properly to the
evaluation of static stability in which tractors are considered in a uniform velocity
or in very slow motions. Such tractor motions are expected when tractors are
operating, particularly, on sloping grounds. Thus, bearing the static stability in
mind, the following assumptions were made far the model development:

1. Tractor is two wheel drive and wide front end type.

2. Rolling resistance is negligible.

3. Traction forces of driving wheels are equal.

4. Wheel-ground contact points of wheels are on the same plane.

5. Wheel forces act through a single contact point between the wheel and

ground.

Determination of Wheel Loads

When a tractor has angular orientations of pitch angle 9, and roll angle ¢
with respect to the space fixed reference coordinate system as shown in Fig. 1,
its weight components w*, w’, and w” in the directions of X, y, and z axes are
given respectively as follows:

W' = —W sin®,
w’ = wcosH - sing
and w? = wcosH * coso.

Then, the force vector representing the total tractor weight becomes

W = -wsinBi + w cos8 - singj + w cos@ * cos¢ k. (1)

Similarly, weights of the front axle assembly and rear body of tractor are given
by force vectors as follows:

—

4 Wi = -wi sinfi + wycos8 - singj + wicosd - cosok, (2)
an
Wz = -y sin®i + wpcos6 - singj + wjcose - cosok. (3)

In order to satisfy the static equilibrium conditions, all the force vectors
acting on the tractor must be summed to yield a zero vector, and so should all
the moment vectors taken about the center of gravity of a tractor. That is;

Fo+ Fop+ Fo+t Fa+ Fp+ w= 0, 4@
and
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AaXFa+PXFp+ X Fe+dXFa+pXxTF, = 0. 5

Two additional equations necessary to determine the wheel loads can be
obtained by establishing moment equations for the front and rear bodies of a
tractor about the hinge axis of the front axle. Taking the moments about the
hinge axis of the forces acting on the front axle assembly and equating it to zero
for the moment equilibrium give

e [(@-R)xTFa+(B-R)xFp+ (si-R)x wil =0. ®
Similarly, the moment equation for the rear body of a tractor becomes
€-[(CE-R)xFe+ (d-B)xFa+ B-MxFp+ (s:-R)xwil=0 (D
Equations (4) through (7) are the basic force and moment equations from
which the wheel loads are to be determined.

Writing in scalar component form, Equation (4) can be expressed as a set
of three scalar equations as follows

Fax + P‘bx + ch + Fdx + pr + Wx = 0, (8_1)
Fd +Fy +F S +Fd +Fy+ w7 =0, (8-2)
arld Faz + sz + Fcz + Fd' + sz +w ?= 0. (8—\:)

Expanding the cross product of Equation (5) and rearranging terms in
scalar components give

(ay Faz - azFay) + (by sz - bz Fby) + (Cy Fcz - Cchy) (9_1)
+ (dy F¢*-d,F) + (Dy sz - szpy) =0,
(az Fax - ax Faz) + (bz Fbx - bbuz) + (Cz ch - Cchz) (9_2)
+ (d. Fq¢* - dxFq®) + (Dz pr - Dprz) =0,
and (ax Fay - ay Fax) + (bx Fby - byFbx) + (Cchy - Cchx) (9_3)

+ (dx de - ddex) + (px pr - pprx) =0.

— ——p —p

of position vectors a, b, ¢, d and D and force vectors F., Fu, Fo, Fp and F;
in the directions of X, y, and z axes respectively.
From the tractor geometry, it may be assumed that

ax = by, (10-1)
Cx = dx, (10"2)
and a;=b:=¢c =d. (10-3)

It is also assumed that traction forces acting on the wheels of the same
driving axle are equal. That is,
F& = Fy, a1-n
and F& = Fd". (11-2)
Substitution of Equations (10-1) through (11-2) into Equation (8-3) and
rearrangement of terms give
ax(F + Fy) - (ay + by)Fe" + &(FS + Ff) - (cy + d)F” (12

+ (pxFDy - Dprx) =0
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From Equations (8-1) and (8-2), we obtain
F&=-F-F -F-F - w (13-1)
and FS +Fd =-Fy -F -F/ - w (13-2)
Equation (13-1) can be rewritten using the tractive force relations of
Equations (11-1) and (11-2) as follows
P = - Fe* - 5(F* + w") (14)

Substituting Equation (13-2) and (14) into Equation (12), and solving for
F.7 + Fy¥ give

FJ + B = oo (@ + by = ¢y = G)FS + 5(cp - d)FS + W)
+{ex - pFY - (& - pWF + oW’ - opw').  (15)
Once F¥ + Fy is determined, F’ + F4 can be obtained from Equation
(8~2). Thus,
F’/ +Ff = - Fd + FY) - F - w,

-arli_é-x—((ay + by - Cy ~ dy)Fax + _%—(Cy - dy)(pr - WX)
+ (ax -~ pIJFY - (cy - DY)FYS + axW’ — cyw™). (16)
Similarly, substituting Equations (10-1) through (11-2) into Equation (9-2)
and rearranging terms give
a.z(Fa,t + Fy* + F” + FgY) - ax(Fg” + sz) - x(F* + Fdz)

or Fcy+Fd = -

+ (pFy* - oY) = 0. 17)
Rearranging Equations (8-1) and (8-3), we obtain
Fo* + Fp' + F& + Fd* = - Fyf - w, (18-1)
and F +Fd =-F'-Fy -Fy - w. (18-2)

Substituting Equations (18-1) and (18-2) into Equation (17) and solving for
Fa® + Fp* give

By + By = ——((cx - pOFy” - (& - DR + oW - o). (19)

ax — Cx

Again, F.” + F4® is determined from Equations (8-3) and (19).
FS+F=-FS+FR)-FF-w

or F& + Féf = - a,l— o {(ax -~ pIFY” — (¢ - PJFp: + axW” — W'} (20

In order to determine F,” Fp* F.” and F¢° Equations (6) and (7) are
expanded in scalar forms. First, expanding Equation (6) yields
{(ax - hoey - (ay - hye;} Fy
+ {(ax - hoe; - (2, - hoex} F&¥
+ {(ay - hydex - (ax — hy)ey} Fy'
+{(b: - hy)ey - (by - hy)e} Fy
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+{(bx - hi)e; - (b; - hJex Fy’

+{(by - hy)ex - (bx - holey} Fy’
+{(s1z - hoey ~ (syy - hye;} wi*
+{(s1x - hxJe; - (s1z — hoed wi’
+{(siy - hy)ex - (s — hxley} wi* = 0.

Substitution of Equations (10-1) through (11-2) into Equation (21) and
rearrangement of terms give

(21

{(az - h)ey - (ay - hy)e; + (a; — hey - (by ~ hyle} Fo~
+ {(ax - hode; - (a; - hled (Fd + Fy)
+ {(ay - hy)ex - (ax - ho)ey} o’
+ {(by - hy)ex - (a - hy)ey} Fy’ + K = G,
K = {(s1z - h)ey - (siy - hyle;} wi*
+ {six ~ hode; —~ (s1z - hoe} wr'
+ {(syy - hy)ex - (six ~ hyxley} Wi
Substituting Equation (19) into Equation (22) and solving for F,” give

F = ﬁé‘;&(& - hoey - (ay + by - Zhyler} Fy'

+{(ax - hoe; - (a; - hoex} (F + Fy')

(22)

where

@)
—L— (s - Bex - (b - hoey) {(cx ~ PIFY” - (c, - P

+ Csz - Csz} + K.
Solving Equation (19) for Fy* yields

' = o (e - pIF - (& - PR vow -~ W) - B, (@)

+

where F.° is obtained by Equation (23).

Secondly, expanding Equation (7) and following the same procedures for
substitution of Equations (10-1) through (11-2) into the expanded eguation and

arrangement of terms give
{2((‘4 - hz)ey - (Cy + dy - Zhy)e;} ch
+ {{cx - hyle; - (c. - hz)ex} (Fcy + de )
+ {(Cy - hy)ex - (cx - hx)ey} Fc
+ {(dy - hy)ex - (cx - hx)%} Fs+L+M=0.

(25)

where L = {(p, - hey - (py - hyp)e} Fy'
+ {(px ~ hode; - (p: - hoes} Fy'
+ ((py ~ hydex - (px - hodey} Fyf
and

M = {(sz - hz)ey - (Szy - hy)ez} wg
+ {(sx - hxde; - (s — hoex} wo'
+ {(Szy - hy)ex - (S2x - hx)ey} sz.
Substituting F4* obtained by Equation (20) into Equation (25) and solving
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for F* give
Fe = —@oer 2 - holey = (y + &y - Zyled) B 20
+ {(ex - hodes - (c; = holed) B + F)
- {(dy - byex - (x -~ haley) (F" + By' + Fy* + W)

+ L + M.
Finally, F4* is determined from Equation (20) as follows
Fdz=_(Faz+Fb,)—Fcz-sz—Wz (27)

where F.* is obtained by Equation (26).

In the above equations, the values of scalar components of position vectors
are determined directly from the tractor geometry. Weight components Wi and Wy,
and drawbar loadings are also obtained from the given type of tractor and loading
conditions. One parameter whose value must be calculated before the computation
is performed is Fy* or Fy", the farce acting in x direction at the wheel-ground
contact point of the front wheel. This force depends on the traction force of the
front wheel and rolling resistance acting on it. Assuming that the traction force of
the front wheel is Tt and rolling resistance Ry, then Fy" is

Fa = Tt - Re. (28)

In this study, since tractor was assumed as rear wheel drive and rolling
resistance of wheels as negligible, Fy* becomes zero. In cases where the front
wheels are powered, however, the traction and rolling resistance forces must be
determined depending on the wheel-ground interacting conditions.

Determination of Stability Boundary
Because the stability loss occurs when the normal to ground wheel load
vanishes, the stability criteria can be defined by
FF <0 i=abocd (29)
I any of Fi* becomes zero or positive, tractor lose their stability. the control
loss occurs when the wheel load on the ground plane is no longer sufficient to
maintain the static equilibrium. In such situations, the following may take place
(Spencer, 1978)
1) Steering control is lost. i.e, the front wheels are no longer capable of
producing the lateral force necessary for directional control. The criterion
for steering control, then, can be defined by

H (Faz + sz) £ Fay + Fby- (30)
2) Rear wheel slips sideways. The criterion for control in this situation is
u FS + Fs) < FY + F{. (31

3) The wheel-ground adhesion is insufficient to withstand the braking force
so that uncontrolled down hill acceleration occurs or up hill travel ceases.
If the left rear wheel loses adhesion, criterion for control is defined by

24 F < wh (32)

— 1133~



Contrary, if the right rear wheel loses adhesion, the criterion becomes
2 4 Fd < w (33

The friction coefficient, 4, in the criterion equations can be evaluated using
the friction circle concept (Spencer, 1972).

COMPUTER PROGRAMMING

A computer program has been developed to determine the boundary points
of the control and stability losses i.e., the combination of the pitch and roll angles
at which the control or stability losses occur. At a given pitch angle, the roll
angle of the tractor was increased until the conditions for the control and stability
boundaries were failed.

In the programming, rolling resistance was assumed to be zero. Another
assumption made in the programming was that the hinge axis of the front axle is
always pointed to the positive x axis direction. This can be acceptable in most
agricultural tractors. Thus, ¢ was expressed as a unit vector representing the
positive x axis direction. The pitch and roll angles were varied in both positive
and negative directions. The program was written using MS-FORTRAN language
executable by the IBM PC compatible computers.

Input data to the program include the weights of a tractor with and without
the front axle assembly, position vectors of the tractor geometry, frictional
coefficient between the wheel and ground and increments of pitch and roll angles
for the computation. Output forms can be selected from three different modes.
Mode 1 prints out all the wheel loads at every combination of pitch and roll
angles unti] the control and stability losses occur. It also prints out the diagnostic
statements at each boundary point and finally the polar diagram depicting the
control and stability loss boundaries. Mode 2 lists the boundary points, at the
given pitch angle, with their diagnostic statements and the polar diagram. Mode 3
gives only the polar diagram.

APPLICATION FOR STABILITY SIMULATION

The computer program developed in this study was wused, as a
demonstration, to evaluate the control and stability loss boundaries of two example
tractors. Input data of the example tractors were obtained from reference
(Reichmann, 1972) and summarized in Table 1. Figure 2 shows the respective
polar diagram produced by the computer simulation.

The control loss boundary varied significantly with variations of the
frictional coefficient. The smaller the value of frictional coefficient became, the
more the region for safe operation decreased. At an infinite coefficient of friction,
the safe operation is limited only by the stability loss.

Application of the stability model also can be made for four-wheel drive
tractors if traction forces of the front wheels are defined.
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CONCLUSIONS

A mathematical model has been developed for the simulation of static
stability of agricultural tractors. The model was based on Reichmann's model but
modified to improve its shortcomings for practical applications. Two examples of
model simulation were presented and showed its usefulness in evaluating the
control and stability loss boundaries.
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Table 1. Input data of example tractors

Tractor A Tractor B

v HElglglelsiclalalolsl

0.72, -0.76, 1.18)m
(0.72, 0.79, 1.18)m
(~-1.09, -0.76, 1.18)m
(-1.08, 0.79, 1.18)m
(-1.25, 0.00, 0.72)m
(0.72, 0.02, 0.28)m
(0.72, -0.07, 0.41)m
(-0.08, 0.01, -0.05)m
425 Kgr

3820 Kgr

{0.00, 0.00, 0.00)m
0.6

(1.61, -0.75, 0.86)m
(1.61, 0.75, 0.86)m
(-0.92, -0.82, 0.86)m
(-0.92, 0.82, 0.86)m
(-1.20, 0.00, 0.50)m
(1.61, 0.00, 0.18)m
(1.61, 0.00, 0.31)m
(~0.05, 0.00, -0.01)m
105 Kgr

3325 Kg;

(~150.00, 0.00, 30.00)Kgs¢
0.7

— 1135




o i)
=< . CG.52_JolG:
=N 4
= . -
X G
® » . )
—= i
Ch \ \ d \
c
—.
Fg
_) '
Fp o z ’E:

Fig. 1 Coordinate axes and vector definition for stability model of tractor
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