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ABSTRACT

In this paper, new algorithms for solving the multiple
traveling salesman problem with time windows are presented.
These algorithms are based on the flow based algorithms for
solving the vehicle scheduling problem. Computational results
on problems up to 750 customers indicate that these
algorithms produce superior results to existing heuristic
algorithms for solving the vehicle routing problems when the
time windows are ’tight enough’ where ’‘tight enough’ is based
on a metric proposed by Desrosiers et al. (1987).

1.0. TNTRODUCTION

The Multiple Traveling Salesman Problem with Time Windows
(m-TSPTW) involves the determination of a minimum cost set of
routes for a fleet of vehicles that service a set of
customers with known demands within their specific time
windows. Each route begins and ends at the same depot.
Furthermore, each customer is serviced exactly once by a
vehicle and all the customers are assigned to vehicles such
that the time window constraints are not wviolated. The
vehicles have unlimited capacity and there is no upper bound
on the length of the routes.

[TL,,TU.] is the time window for customer i where TL, and
TU, are the earliest possible time and the latest possible
time for beginning the service of customer i, respectively.
In the m-TSPTW, both the lower and upper bounds on the time
windows are hard so that a vehicle cannot begin to service a
customer either before the lower bound nor after the upper
bound of the given time windows of the customers. WTH, the
delay in time to begin the service at customer 3j,” when
customer j is immediately serviced after customer i by the
same vehicle, is defined to be the following:

WT.. = Max {0, TL, - Arrival Time at customer j}. (1.1)
Furthermore, the time window width at customer i is defined
as follows:

width, = TU, - TL, (1.2)
There are two special boundary cases of the m-TSPTW.
Case 1: When TL, = - «» and TU;, = « for each customer i, then
the problem is equivalent to the single depot Multiple
Travelling Salesman Problem(m-TSP). there exist many

algorithms for solving the m-TSP, which is NP-hard. Most of
these algorithms are based on procedures to solve either the
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traveling salesman problem(TSP) or the Vehicle Routing

Problem (VRP) .

Case 2 : When TL, = TU, for each customer i, then this problem

is equivalent to the Vehicle Scheduling Problem(VSP). The VSP

is solved optimally in polynomial time as a Minimum Cost Flow

Problem (MCFP) . Algorithms for solving the VSP are further

discussed in Section 3.

Traditionally, the m-TSPTW is solved as a VRP with time
windows (VRPTW) regardless of the time window width. In this
paper, we attempt to adapt the VSP algorithms to solve the m-
TSPTW. The following questions are addressed in this paper:
1. How should the VSP algorithms be modified to produce

effective results to the m-TSPTW?

2. For what time window width will the modified VSP
algorithms produce better solutions than the VRP
algorithms?

A key factor in this research 1s connected with the
definition of the tightness of the time windows. It is
expected that the modified VSP algorithms will give better
solutions to the m-TSPTW than the VRP algorithms when the
time window width are small. Desrochers M. et. al. (1987)
offers some definitions for the tightness of the VRPTW.

The typical applications of the m-TSPTW are the scheduling
of buses for mass transit systems and the schedullng of
school buses.

2.0. The m-TSPTW PROBLEM

A key feature of the m-TSPTW problem is the m-TSPTW
Network. The construction of this network and the
mathematical programming formulation of the m-TSPTW are now
described.
2.1. The m-TSPTW Network

V is the set of vertices and A is the set of arcs in a
network G = (V,A). In G, we have V = {s,t,N}, where s and t
are the supersource and supersink nodes and represent the
same single depot in the m-TSPTW. A node in the node set N
represents a customer to be serviced. Each customer i € N,
has a time window [TL,,TU,] and a service time ST, which is
the time required to service customer i. There is no
restriction on the time windows of nodes s and t since the
length of the zroute of any vehicle 1is assumed to be
unrestricted.

A potential arc from customer i to customer j in the arc
set A can be classified as follows:
Feagible Arc : An arc (i,j), (i,j) € A, is called a Feasible
Arc 1f the following condition is satisfied:

TT.. < TL. - (TU + ST.) (2.1)
A fea31ﬁle arc is always feasible on any route.
Sometimes Feasible Arc : An arc (i,j), (i,]J) € A, is called
a Sometimes Feasible Arc if the following condition 1is
satisfied:
TL - (TU + ST, ) < TT.. < TUJ - (TL + ST.) (2.2)

If arc (1 j) 1is on a path and” arc (1 j) 1s a Sometimes
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Feasible Arc, then a (s8-t) path in G containing arc (i,3j) may
or may not represent a feasible schedule for a vehicle.
Infeasible Arc : An arc (i,j) is called an Infeasible Arc if
the following condition holds:

TT,; > TU; - (TL, + ST,) (2.3)
If this arc were to be included in A and this arc existed on
an (s-t) path, then this path would always be infeasible.
Infeasible Arcs are not included in the network G.

Besides the arcs between customers, G contains an arc
(s,1) from the supersource s to each node i, i € N, and an
arc (i,t) from each node i, i € N, to the supersink t. Since
there are no time window restrictions on these arcs, these
arcs are always feasible in the solution to the m-TSPTW.

The solutions found to the m-TSPTW by applying the VSP
algorithms can be infeasible in that the routes and schedules
in the solution may not satisfy all of the time window
constraints. Every path in the m-TSPTW Network from the depot
at the beginning of the day to the depot at the end of the
day is a feasible route if all of the arcs in the path are
Feasible Arcs. A path containing customer i is an infeasible
route if the wvehicle arrival time at customer i is greater
than TU, .

For example, suppose that we have a path including two
Sometimes Feasible Arcs as follows:

- Start time of service for customer 5§
} [~ End time of service for customer 5

9196 120-128 150-155
— 32 - pil o -
D3 S 6 e ~ D
OLIN  [ILi21] | [139,149)
: !
Time Window Travel time from node 5 to node 6

for customer 3

Arc (3,5) and arc (5,6) are Sometimes Feasible Arcs since the
travel time on each arc satisfies (2.2). The vehicle departs
customer 5 at the time of 128 units, travels the arc (5,6)
for 22 units of time and then arrives at customer 6 at the
time of 150. This route is infeasible since the arrival time
at customer 6 violates the time window of the customer,
[139,149]. If all of the routes in the obtained solution by
adapting the VSP algorithms are feasible, then the solution
is feasible.

The fleet size can be unrestricted or an upper bound on
the fleet size can be specified. If the fleet size is
unrestricted, the fleet size is determined simultaneously
with the best set of routes and schedules rather than being
fixed a priori.

The primary objective is to minimize the total travel time
of the vehicles. Secondary considerations in the m-TSPTW are
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minimizing total vehicle wait time and the number of vehicles
required. Given a set of vehicle schedules, the total vehicle
wait time is the sum of the delay times at all of the
customers. In Section 5.2, metrics for comparing solutions,
which combine total vehicle travel time and wait time, are
proposed.

2.2. Mathematical Programming Formulation of -TSP

The decision wvariables in the mathematical programming
formulation of the m-TSPTW are the following:

(1) X5 (i,j) € A, is the flow variable which equals 1 if
the arc (i,j) exists on an (s,t) path and equals 0,
otherwise.

(2) T, is the starting time to service customer i, i € N.
The mathematical programming formulation of the m-TSPTW

is the following:

Min 2z =X, ., C.X. (2.4)
subject to
Ei:(i,j)el\ X, =1 for 3 € N, (2.5)
Ei:(i,j)eA X - ):i:(j Dea X535 =0 for j € N, (2.6)
=L A & S - (1-Xij)Mij for i,j € N (2.7)
TL, < T, < TU, ‘ for i € N, (2.8)
X.. € {0,1} for (1,3) € a, (2.9
where ndij > TU, + ST, + TT, - TL,.

In this formulation, the objective function (2.4)
represents the total travel cost in the resulting vehicle
schedules. Constraints (2.5) express the fact that every
customer must be serviced exactly once by a vehicle.
Constraints (2.6) express the usual network flow conservation
conditions. Constraints (2.7) and (2.8) ensure the
feasibility of the vehicle schedules. Constraints (2.9)
ensure that each arc is on at most one vehicle schedule.

Constraints (2.5),(2.6) and (2.9) with the objective
function (2.4) is a single commodity MCFP slince each route
begins and ends at the same depot. The algorithm for solving
the MCFP gives an integer solution. This is the basis for the
minimum cost flow formulation of the VSP described in Section
3. Constraints (2.7) and (2.8) are needed for the Sometimes
Feasible Arcs defined previously. Since solving the linear
programming relaxation of (2.4) - (2.9) is not guaranteed to
produce integer answers, the m-TSPTW has to be solved as an
integer program.

2.3 Vehicle Routing Problems

There is a vast literature for solving the VRP. We refer
the reader to Bodin et al. (1983) for an extensive survey of
optimal and approximation methods for solving vehicle routing
and scheduling problems. In Golden and Assad (1988), there
are many new advanced papers on vehicle routing and
scheduling. In Desrosiers et al. (1992), there 1is an
extensive overview of the algorithms for time constrained
routing and scheduling. Baker and Schaffer (1986), Bodin et
al. (1979), Christofides et al. (1981a,1981b), Desrochers et
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al. (1987,1990), Desrosiers et al. (1984,1985, 1986, 1988),
Kolen et al. (1987), Lin (1965), Lin et al. (1973), Solomon
(1987), Solomon et al. (1988) and Swersey et al. (1984) give
algorithms to solve the routing and scheduling problems with
time windows. Column generation approaches in Desrochers et
al. (1990) and Desrosiers et al. (1984) solve the m-TSP with
tight time window very effectively when the problem size is
small. As the problem size grows larger, the column
generation approaches may not be preferred to our algorithms
because the approaches have to generate large number of
columns. '

An effective sequential insertion approach for solving
VRPTW in Solomon(1987) and the Baker and Schaffer’s Branch
Exchange Procedure (Baker and Schaffer (1986)) are compared
with our algorithms in computation study in Section 5.

3.0 VEHICLE SCHEDULING PROBLEM AND ALGORITHMS
Our research has focused on adapting VSP algorithms to

solve the m-TSPTW when the time window is tight. The VSP is
to design a set of routes to service all of the trips while
minimizing total travel cost. Each trip 1is serviced by
exactly one vehicle. In the single depot vehicle scheduling
problem, an acyclic network called the VSP Network is
created. The VSP Network is transformed to a second network
called the minimum cost flow problem network (MCFP Network)
and a MCFP is solved over this network. The solution to the
MCFP is a set of paths over the VSP Network. These paths
partition the nodes(trips) in the VSP Network such that each
node is on one path, and the total travel cost is minimized.

The VSP Network is a special case of the m-TSPTW Network
where TL, = TU, for each 1i. The VSP Network only contains
Feasible Arcs.
3.1 Mathematical Programming Formulation of the VSP

We now present the mathematical formulation to the VSP
which was presented in Bodin et al. (1983). The variables in
this formulation are X, where X,. = 1 if trip j is to follow
trip i on a vehicle schédule and kﬁ = 0 otherwise. With this
variable definition, the VSP is formulated as a MCFP as
follows:

lsdigjgct:: }éo(.i,j)eA Cii¥yj (3.1
o X.. - % . ... X.. =0 VijeN (3.2)
1:(1,73) i i:(j,1)€ 1
L Xy = e VieN (3.3)
X, €’{0,1Y V (1,3) € A (3.4)

Constraints (3.2) are the standard conservation flows and
constraints (3.3) ensure that exactly one path (vehicle
schedule) covers each node. In this formulation, each path is
a vehicle schedule and there is no restriction on the number
of paths that can be found.

3.2. Transformation of the VSP Network
In order to transform the VSP into the MCFP, the VSP
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Network, G = (V,A), is expanded into a larger network, G' =

(v,,A "), as follows:

1. Every node i in G is replaced by a starting node SN, and
an ending node EN,, in the expanded graph G.’

2. There is an arc drawn from SN, to EN, with an arc cost C,,
= 0. Both the lower and upper bound on flow on this arc
are one to ensure that each customer has to be visited
exactly once by a vehicle.

3. Each arc (i,3j), (i,3) € A, is drawn in G from EN, to SN..
Furthermore there are arcs from the supersource 8 to each
node SN, and each node EN;, to the supersink t. The arc
costs are as defined in G except that the capital cost FC
is not included on the arcs (s,SN,).

4. An arc from t to s is added. This arc is called reverse
arc and denoted as (L,U,FC) where L and U represent the
lower bound and the upper bound on flow, respectively and
the arc cost, FC, 1is equal to the capital cost of a
vehicle. If we have no restriction on the fleet size, then
the reverse arc would be denoted by (0,U,0) where U is a
large constant.

The MCFP formulation of the VSP gives an optimal solution
to the VSP and every path from the depot to the depot is
always feasible since the MCFP Network is acyclic. The only
difference between the VSP and the m-TSPTW is that there are
no Sometimes Feasible Arcs in the VSP Network.

Bertsekas and Tseng (1988), Aashtiani and Magnanti (1976),
and Bradley, et al. (1977) provide some useful key algorithms
for the MCFP. We used Bertsekas and Tseng’s relaxation code
RELAXT-II in this research.

4.0. ALGORITHMS FOR LVING THE m-TSPTW

We now develop some heuristics for solving the m-TSPTW
based on the VSP algorithms and a procedure for finding a
lower bound on the total travel time(cost). A feasilble
solution to the m-TSPTW is a set of paths where the time to
begin service on each customer 1 on each path lies between
TL., and TU,. We call the combined set of Feasible Arcs and
Sometimes Feasible Arcs, the set of Possible Arcs.

Our algorithms for solving the m-TSPTW consists of two
steps. The first step is to construct the initial solution by
using the Flow Based Route Construction Algorithm (FBRCA)
described in Section 4.2. The second step improves the
obtained initial solution using the route improvement
heuristic, FIMP.

4.1. Lower Bound Solution

If only the Feasible Arcs are included in the m-TSPTW
Network, then the solution will be always feasible but it may
be suboptimal. If we include all of the Possible Arcs in the
m-TSPTW Network and its solution is feasible, then the
optimal solution has been found. However, if the solution
with all Possible Arcs is not feasible, the value of the
solution is a lower bound solution to the optimal solution of
the m-TSPTW.
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4.2. Flow Based Route Consgstruction Algorithm (FBRCA)

As noted above, if only Feasible Arcs are used in solving
the MCFP formulation of the m-TSPTW, then a feasible but
generally suboptimal solution to the m-TSPTW is found. If
some Sometimes Feasible Arcs are included in the formulation
of the MCFP and this solution is feasible to the m-TSPTW,
then this solution is no worse than the solution with only
Feasible Arcs. However, it is possible that too many
Sometimes Feasible Arcs are added to the MCFP formulation so
that the solution to the MCFP is infeasible to the m-TSPTW.
The problem is to determine how many Sometimes Feasible Arcs
should be added to the MCFP formulation in order to find a
feasible solution with a minimum total travel cost to the m-
TSPTW. This method to solve the m-TSPTW is called the FLOW
Based Route Construction Algorithm (FBRCA). A key to the
FBRCA is the step size.

4.2.1. Step Size

Let arc (i,j) be a Sometimes Feasible Arc. The Infeasible
Time, IT,,, is defined as follows:

IT = TT] - (TL. - TU - ST ). (4.1)
We believe that'as the value of IT gets larger, it becomes
more likely that an (s-t) path containing this arc is
infeasible to the m-TSPTW. An arc (i,j) will exist in the
MCFP Network on iteration k of the FBRCA if IT,. < STEP, where
STEP, is called the step size of iteratiomn k If the time
window width for each customer is identical, then STEP, is
between zero and twice the time window width. When the tlme
windows are not identical, STEP, is between zero and two
times the width of the widest t1me window.

4.2.2. The FBRCA Algorithm

Step 1 : Set the initial step size equal to 2 x Width and
form the initial MCFP Network which contains all of
the possible arcs of the m-TSPTW.

Solve the MCFP.

Check if the solution at Step 2 is feasible or not.

If it is feasible, the solution is optimal. Then,

terminate the procedure. Otherwise, set LOW = 0 and

HIGH = 2xWidth.

(At the kth iteration for k 2 2)

Step 3 : Set STEP, = [ (LOW + HIGH) /2], where [ x | means the
next integer greater than x if x is not integer and
equals x otherwise.

Step 4 : Construct the new MCFP Network including all of the
feasible arcs and some Sometimes Feasible arcs
satisfying IT, < STEP,.

Step 5 : Solve the MCFP.

Step 6 : Check if the solution at Step 5 is feasible or not.
(1) If it is feasible, then set LOW = STEP, and
check if the difference between LOW and HIGH is
equal to 1 or not. If it is, then terminate the
procedure since the current solution is the best
feasible solution to the m-TSPTW. Otherwise, set k

Step
Step

wN
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= k +1 and go to Step 3. (2) TIf the solution is
infeasible, then set HIGH = STEP,. If the difference
between LOW and HIGH 1s equal to 1, then retrieve
the best feasible solution generated in the
previous iteration and go to Step 7. If not, set k
= k +1, and go to Step 3.

Step 7 : Let the number of wvehicles of the best feasible
golution be NVEH.

Step 8: Set the upper bound of the reverse arc, U < NVEH-1,
on the current MCFP Network, i.e., U = NVEH -1.

Step 9: Solve the MCFP with the changed U on the reverse
arc.

Step 10: Check if the new solution is feasible or not. If it
is feasible, then set NVEH = NVEH - 1 and go to
Step 9. Otherwise, retrieve the feasible solution
requiring the fewest number of vehicles from the
previous iteration and terminate the procedure.

The FBRCA can search for the minimum number of vehicles as
well as the minimum total travel time. We can reduce the
fleet size of the current best feasible solution by setting
the upper bound of the reverse arc of the MCFP Network to be
smaller by one than the number of vehicles found on the
current best feasible solution and repeat the FBRCA. This
procedure can be repeated until the fleet size is set so
small that no feasible solution to the MCFP exists.

4.3. Route Improvement Heuristic Algorithms
Given an initial solution to the m-TSPTW, the route

improvement algorithm operates as follows: Select two or
three routes from the existing solution and solve a m-TSPTW
consisting of only customers on these selected subset of
routes by using the FBRCA. If 2 routes are selected, this
improvement procedure is called a 2-route combine procedure,
and if 3 routes are selected, this procedure is called a 3-
route combine procedure. When the 3-route combine procedure
is applied, some three routes from the given initial solution
are combined to make a subset of customers and the FBRCA is
applied to this subset of customers. If the solution found
from this application is better than the old one, then the
0old 3 routes are replaced by the new 3 routes. This procedure
is repeated until all of the combinations to select 3 routes
is carried out. These route combine procedures are repeated
until no further improvements are found. We call this
improvement solution algorithm FIMP. Details on this
algorithm is presented in Lee (1992).

5.0. COMPUTATION STUDY
The three test problems are randomly generated for the

computation study of our algorithms. The characteristics of
the test problems are given as follows: (1) the location of
the customers are generated from a uniform distribution, (2)
The travel time between two customers is a linear function of
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the Euclidean distance between their locations, (3) TL, is
randomly generated according to a uniform distribution, (4)
TU, is then set equal to TL, + Width where Width is a constant
number for each test problem and (5) No Possible Arc longer
than 60 minutes is allowed in the associated network.

For each test problem, we executed 2 initial solution
algorithms and 2 improvement solution algorithms for each
initial solution. We used the following metrics to compare
these 6 solutions: (1) Total travel time (TT), (2) CT, =
(0.75)xTT + (0.33)xWT, (3) CT2 = (0.75)xTT + (0.50)xWT where
WT 1is total wait time in the solution and (4) Number of
vehicles. CT, and CT, attempt to capture operating cost by
weighing both travel time and wait time.

5.1. Computational Results

Computer programs written in FORTRAN were developed to
implement our FBRCA and FIMP and executed on an IBM 3081/D
computing system. The FORTRAN codes of the VRP algorithms,
INS1 and BIMP, were provided by Dr.Edward K. Baker and
slightly modified to test our randomly generated problems.
INS1 is the implementation of a VRPTW for finding an initial
solution to a vehicle routing problem and BIMP is the
implementation of a VRPTW for finding the improved solution
from an initial solution to a VRP.

In the ensuing tables, we report more than one best

solution when one best solution has less total travel time or
less total operating cost than another best solution but
requires more vehicles.
The number of vehicles required for each best solution is
marked in a parenthesis next to the corresponding solution.
RT, in Desrochers M. et. al. (1987) for the tightness of the
VRPTW is the ratio between the average time window width and
the average travel time between customers.

The computational results on the test problems are
reported in Table 5.1 through 5.4. The problems are called
P250, P500 and P750 according to the number of customers in
the problem. In Table 5.1, most of the best solutions in
terms of total travel time have been found by using the FIMP
improvement procedure with the given initial solutions. An
optimal solution has been obtained where the time window
width was 5 minutes. With respect to the two operating costs,
the best solutions have been also found by using the FIMP
improvement procedures in the all of the time window cases.
The best solutions in terms of minimum number of vehicles
have been found by the FBRCA or FIMP improvement procedures
when the time windows are tight. If the time windows become
wide, the best solution with minimum number of vehicles can
be obtained by using the INS1 initialization procedures.

In Tables 5.3 and 5.4, we have found that the FIMP is
superior to the other improvement heuristic to find the
minimal travel time solutions regardless of the time window
width. These tables also show the consistency of our
conclusion that the FIMP is superior to the BIMP to obtain
the best feasible solution when the time windows are tight
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such as 5 or 10 minutes. However, the INS1 is always better
than the FBRCA to find an initial solution.

Table 5.1. Computational Results of Algorithms on P250

width=1, RT,=0.026

ALG Width=5, RT,=0.132
TT WT RT CT, CT, TT WT RT CT, CT,
LB 6906 6980 31 7503 8669 6753 6607 30 7264 8368
6851 7422 32 7609 8993 6683 6929 31 7319 8476
FBRCA 7068 7133 32 7676 8867 6888 6188 29 7226 8260
FIMP 6977 7242 32 7644 8853 6888 6188 29 7226 8260
BIMP 7037 7164 32 7663 8859 6888 6188 29 7226 8260
INS1 8836 4564 34 8146 8909 8887 3342 32 7778 8336
FIMP 6994 6883 32 7537 8687 6780 6722 31 7328 8446
BIMP 7203 7241 33 7813 9022 7054 6137 31 7334 8359
ALG Width=10, RT =0.263 Wwidth=15, RT,=0.394
TT WT RT CT, CT, TT WT RT CT, CT,
LB 6196 5544 26 6493 7419 5821 4979 24 6023 6855
6159 5912 27 6587 7575 5817 5500 26 6194 7112
FBRCA 6662 5754 28 6912 7873 6568 5339 27 6703 7595
FIMP 6321 5824 28 6680 7652 5933 5235 26 6193 7067
BIMP 6378 5799 28 6714 7683 6121 5392 27 6386 7286
INS1 7780 2937 27 6813 7304 7608 1941 24 6352 6676
FIMP 6302 5378 27 6517 7415 6098 4289 24 6001 6718
BIMP 6510 5263 27 6635 7514 6187 4252 24 6056 6766
Table 5.2. Summary of Comparison of Algorithms on P250
COST Width=1, RT =0.026 Width=5, RT =0.132
Minimize TT FBRCA/FIMP (32) INS1 /FIMP(31)
FBRCA ALL (29)
Minimize CT, INS1 /FIMP(32) FBRCA ALL (29)
Minimize CT, INS1 /FIMP(32) FBRCA ALL (29)
No. of Vehicles FBRCA ALL (32) FBRCA ALL (29)

INS1 /FIMP(32)

COS8T Width=10, RT =0.263 Width=15, RT =0.394

Minimize TT

Minimize CT,
Minimize CT,
No. of Vehicles INS1 ALL

INS1 /FIMP(27)

INS1 /FIMP(27)
INS1 /FIMP(27)
(27)7

FBRCA/FIMP (26)
INS1 /FIMP(24)
INS1 /FIMP(24)
INS1 /FIMP(24)
INS1 ALL (24)
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With respect to the operating costs, the FIMP is superlor
to the BIMP in both cases of the P500 problem while the BIMP
is better for the P750 with 5 minute time window width and is
also superior in terms of CT, in the 10 minute width case.
From these analyses, we conclude that the FIMP is superior to
the BIMP when the size of problem becomes smaller with the
fixed time window width, or when the time windows become
tighter with the fixed size of problem.

Table 5.3. Summary of Comparison of Algorithms on P500

P500

COST

Width=10(RT,=0.286) Width=15(RT,=0.417)

Minimize TT

Minimize CT,
Minimize CT,

FBRCA/FIMP (35)
INS1 /FIMP(33)
INS1 /FPIMP (33)
INS1 /FIMP(33)

FBRCA/FIMP (35)
INS1/ FIMP(29)
INS1 /FIMP (29)
INS1 /FIMP(29)

No. of Vehicles INS1 ALL (33) INS1 ALL (29)

Table 5.4. Summary of Comparison of Algorithms on P750

P750

COST

Width=5 (RT =0.136) Width=10(RT =0.263)

FBRCA/FIMP (65)
INS1 /FIMP(63)
INS1 /BIMP (63)
INS1 /BIMP(63)
INS1 ALL (63)

Minimize TT FBRCA/FIMP (62)
INS1 /FIMP(54)
INS1 /FIMP(54)
INS1 /BIMP(54)

INS1 ALL (54)

Minimize CT,
Minimize CT,
No. of Vehicles

6.0. CONCLUSION AND FUTURE RESEARCH

The computational results indicate that the FIMP is very
successful at improving an initial solution when the time
windows are tight.

Our analyses of the computational experiments provide the
following conclusions:
Main Conclusion
(1) The FIMP works best for small values of Width regardless
of initial solution algorithms given a fixed scheduling
horizon, SH, and a fixed number of customers to be serxrviced.
(2) The FIMP works best when RT, is small. In the test cases
studies, if RT, < 0.5, then in most cases, the FIMP is the
preferred improvement procedure. In the cases where the FIMP
did not provide the best solution, then its solution was
generally close to the best. More tests are needed to further
quantify this result. However, the FIMP appears to be a
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relatively risk-free algorithm to use as an improvement
procedure where RT < 0.5.

Conclusions (1) and (2) can be explained as follows: The
FIMP works best when the density of customers is small. In
this case, the tight time windows constrain the solution so
that the temporal aspects of the problem play a pivotal role.
As the density increases, the temporal aspects of the problem
become less significant and the spatial aspects become more
important and the routing algorithms tend to give a better
solution.

(3) The FIMP absolutely finds the best solutions in terms of
the total travel time over most of cases we tested.

The FIMP is a repetition of the same algorithm as the
FBRCA except that, on each repetition, the FIMP is applied to
a subset of the customers, which are the customers on a
subset of the routes. In contrast, the INS1 and the BIMP are
different algorithms. These results might suggest an approach
for solving vehicle routing and scheduling problems. First,
an algorithm is applied to the total set of customers in
order to partition these customers into routes. This can be
thought of an initialization procedure. Then, the same
algorithm is repeatedly applied to the customers on a subset
of the routes. If an improved solution is found, then these
new routes replace the old routes. This second set can be
thought of as an improvement procedure. This approach will
probably be most effective when the problem 1is highly
constrained.
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