Terminal-Pair Reliability
Using FFlow Augmenting Path Search Algorithm

Moon Soo Choi and Chi-Hyuck Jun

Department of Industrial Engineering
Pohang Institute of Science and Technology
P.O. Box 125, Pohang, 790-600 Korea

ABSTRACT

This paper considers a reliability problem as a special type of flow
problem and presents an algorithm to evaluate the exact 2-terminal
reliability of networks by using a backtracking technique. It employs a
polygon-to-chain reduction in addition to series and parallel reduction
techniques to reduce execution time. In comparisons, it presents a much
better performance than other algorithms known to us. We also propose
a methodology to apply the algorithm for approximation of the system
reliability.

I. INTRODUCTION

Over the last several decades, many reliability analysis techniques have been
introduced for a variety of complex network systems. Some of them are used for
approximation by Monte Carlo simulation while others are used for an exact system
reliability evaluation. Fishman [5] presents the variance reduction techniques to
simulate network reliability using edge-disjoint minimal cut sets and minimal path
sets. Jun and Ross [6] demonstrate the power of their variance reduction techniques
using the total hazard in estimating system reliability by simulation. These variance
reduction techniques significantly reduce computational time in comparison with
raw simulation. However, these still need a long simulation time to obtain reliable
results and require additional work to derive minimal cut sets or path sets.

Although computation of the exact reliability generally requires exponential
time, many authors have proposed a variety of algorithms to obtain an exact
reliability. Page and Perry (8, 9] and Park and Cho {10] utilize the factoring theorem

— 136 —

to compute an exact system reliability by introducing recursive algorithms. Yoo and
Deo [12] improve the Dotson algorithm [4] by utilizing the edge incidence matrix.
Deo and Medidi [3] demonstrate the recursive algorithms for terminal-pair reliability
by using a parallel processing microcomputer. Ahmad [2] presents an algorithm
using backtracking techniques to evaluate the exact system reliability and Lee [7]
proposes an algorithm to compute reliability of flow network considering flow
capacity. The algorithms introduced above employ a factoring theorem although it
is not mentioned explicitly sometimes. However, it is hard to find the best pivoting
arcs of a given network which give us the least complexity.

We propose the backward factoring algorithm using backtracking techniques,
(we call it flow augmenting path search algorithm (FAPSA)), to evaluate the exact
system reliability. The backtracking technique provides advantages of having
simple data structures to construct the search tree and of requiring a smaller
memory size as compared to other algorithms. Furthermore, the algorithm shows a
much better performance in comparisons with other algorithms. The algorithm is
easily implemented by inserting a flow concept in the reliability problem (refer to
Section 3).

II. NOTATIONS

G network (system)

R(G),R(G) system reliability and unreliability (=1-R(G)) of a network G
St source and sink nodes

I state of the edge i (1 if it is functioning and 0, otherwise)

Di, i success and failure probabilities of the edge i

A1,82 remaining flow at node i, and multiplying factor which results from
polygon-to-chain reduction for the remaining flow at node i

F,L total flow which is sent to the sink, total flow loss

F; total flow which can be sent to sink with remaining flow at node i

Li total flow loss for the remaining flow at node i

fi flow quantity which is sent to sink through the ith found path

lj flow loss associated with the jth cut

III. FLOW AUGMENTING PATH SEARCH ALGORITHM
1. Basic Concept of the Algorithm
Let us consider the following flow problem with losses. We try to send the unit

flow from the source node s to the sink node t. The edge failure probabilities are
regarded as loss coefficients and so some of the flow are lost in a network. Suppose

— 137 —

that two nodes ¢ and j in a network are connected by an edge k with failure
probability ¢x. When we send the amount of flow @Q; from node i to node jthrough
the edge k, the actual amount of flow sent to node jis @Qipx and the flow loss Qjqx is
assumed to remain at node i (the tail node of arc k). Under the assumptions that the
remaining flow can not be sent through the same edge again and that there is no loss
when sending the remaining flow backwards, (to the previous nodes on path), to
augment through other paths, the remaining flow can then be sent to the sink if there
is any other available path, (we call it "flow augmenting path"), but it will be
permanently lost, otherwise. Thus the remaining flow of Qigx at node i can be sent
to the sink through other paths if any exist. Finally the total flow sent to the sink
will be the system reliability and the total (permanent) flow loss will be interpreted
as the system unreliability.

1
o -

Figure 1. A Series-Parallel System

For example, consider a series-parallel system shown in Figure 1. Starting with
the unit flow at node s, we can initially send p; to node 1 through edge 1 and then
send p;ps to node ¢ through edge 3. So the remaining flow (1-p;) occurs at node s and
p1(1-p3) at node 1. The remaining flow at node 1 is lost since there is no other
augmenting path to reach node ¢, whereas the remaining flow at node s can again be
sent to node ¢ through the augmenting path (edges 2 and 3). Therefore we send extra
flow (1-p1) peps to node t. The remaining flow at node s is updated to (1-p;)(1-p2) and
to (1-py)pa(1-p3) at node 1. There are no other augmenting paths, thus the total flow
sent to node ¢ (i.e. system reliability) and the total flow loss (i.e. system
unreliability) are as follows:

R(G) = pips + (1-p1)p2p3, R(G) = pi(1-p3) + (1-p1)(1-pa) + (1-p1)pa(1-p3).
In one sense our reliability problem can be a special max-flow problem with losses
under the assumptions explained previously.

2. Network Reductions

To reduce the computational burden, FAPSA uses four types of graph reduction
techniques, (serial reduction, parallel reduction, a polygon-to-chain reduction, and a

— 138 —

(2) ON:- @) o —=—0
(©) (d) @—@< — o=

Figure 2. Reductions Employed

special type of series reduction), as shown in Figure 2. For the simple series
reduction in Figure 2.(a), the new edge probability pa' is papp. For the parallel
reduction in Figure 2.(b) pa' is pa+pu-papy. Figure 2.(c) presents one type of the
polygon-tochain reductions introduced in [11].

The polygon-to-chain reduction needs some explanation in a flow concept
context. In Figure 2.(c), let z and y denote the flow quantities which we send to the
sink node through the edges from node 2 and node 3, respectively, then the total flow
in the reduced graph G' is as follows:

R(G') = pa'z+ (1-pa'7)pp'y (1)
The new edge probabilities reduce to (see [11]) pa'=6/(6+A) and py'=6/(6+B),
respectively, — where é=papb+papctpbpc2papope, A=pu(1-pa)(1-pc), and
B=pa(1-pp)(1-pc). The reliability of the original graph is obtained by

R(G)=Q R(@), (2)
where Q=(6+A)(6+B)/6. Thus for the remaining flow A; at node 1, the flow
quantity which we can send to the sink (which will be denoted by F}) is

FL =M\ F (3)
where Fi' denotes the flow quantity from node 1 after the reduction, and
M=(6+A)(6+B)/6. Here A1 can be considered as the new remaining flow at node
1 in the reduced graph. Then the flow loss at node 1 can be expressed by

Li=M1-U%F")=M1-Q) + (1 -FY). (4)
Actually we do not know the flow loss L; until /' is computed. However, we are able
to calculate in advance the quantity of the first term from equation (4). We consider
A1(1-€y) as a partial {flow loss due to this reduction.

Lastly, Figure 2.(d) depicts a special type of series reduction. To remove an edge,
we just update the remaining flow at node 1. Then

Fy= MpaFy',and Ly = /\1(1'113) + /\1pa(l-F1'). (5)

— 139 —

The remaining flow at node 1 is updated to Aypa, and we lost the flow quantity of
At(1-pa) by this reduction. This reduction is not critical to reduce computation time
but it is useful when we want to have the reliability bounds since we can update the
total flow loss to have a tighter upper bound.

The authors [3, 8, 9] introduce several additional reduction rules besides the
above four reductions. FAPSA excludes the selfcycling edges that all selected edges
as elements of a path are functioning and it detects irrelevant edges as a part of path
searching.

3. Summary of Algorithm

Initially the algorithm reduces the given graph by series and parallel reduction
techniques. Then it travels to find flow augmenting paths from the source to the
sink. To build the back search tree which is the LIFO (last in first out) set, find all
edges connected to the source and then do reductions until no more reductions are
possible. Those reduced edges are included in back search tree, and the last edge is
selected from it. Assume that the selected edge is functioning, we find edges
connected to the head node of the selected edge excluding selfcycling edges. They
actually consist of unselected edges which are connected to the tail node, (this time it
is regarded as the new source), of the selected edge and the newly found edges
connected to the head node of the selected edge. After another graph reduction, the
reduced edges enter search tree as the ones connected to the head node of the selected
edge. This procedure is repeated until a path which connects the source and the sink
is found. It is pretty efficient since this considers just the previous state and new
entering edges. Thus FAPSA does reductions sequentially whenever a new edge is
selected as an element of a path and it does not perform reductions for whole graph.

As explained previously, FAPSA employs the backtracking technique and the
arbitrary s—t path searching rule constructing the search tree simultaneously with
edge reductions. On the other hand, the Reduce & Partition in [3], which is known
as the fastest algorithm, uses the recursion method and the s—t shortest path
searching rule. The differences between the methodologies of the two algorithms
fairly influence execution time.

The recursion method used in [3, 8, 9] may simplify the algorithms but it requires
more memory to store each sub-problem generated by the pivoting edges. Also the
edge reductions with it are inefficient since it duplicates its work when it reduces the
sub-problems generated sequentially from the states of edges on a path. The shortest

- 140 —

s—t path searching rule in [3] generates fewer sub-problems generally without
reductions, but this may not be true for reductions. When reduction techniques are
employed, the best path searching rule could be the one which makes it possible to
reduce the graph efficiently and thus generates fewer sub-problems -eventually.
Reduce & Partition searches the shortest s—¢ path initially, then it pivots each edge
on the path sequentially and recursively. Thus the pivoting edges are fixed once the
shortest path is found. It may not be efficient since the rest of the edges on the path
do not always constitute the shortest path of the graph generated by assuming that
the previous edges on the path edge are contracted.

We avoid this inefficiency by using the backtracking method. Since FAPSA
constructs the back search tree simultaneously with the edges reduced sequentially
when it searches a path, it takes advantage of the previous information fully. That
is, edge selection and graph reductions are done using the most recently updated
graph which saves time avoiding unnecessary work. Thus FAPSA can generate a
fewer number of total paths (events in [3]) eventually. In addition, the algorithm has
the advantage that it detects failure events, introduced in [12], without difficulty
when it travels to search a path.

IV. COMPUTATIONAL EXPERIENCE

To compare the performance of FAPSA with other algorithms, three typical
benchmark networks shown in Figure 3 are used here. The computational speed of
modern computers has been increased surprisingly. Thus it is meaningless to
compare the performance of algorithms under different environment. Here we chose
the IBM-AT personal computer, (main processor: 80286, co-processor: 80287, clock
speed: 16 Mhz), for comparisons with other algorithms since it is comparable to the
Macintosh II (main processor: MC68020) which is used in [3, 9]. FAPSA is
programmed in C programming language and it is compiled by Turbo-C version 2.0
for the comparison, and the floating type used is double to deal with real numbers.

In Table 1, the computation times of three versions of FAPSA are compared with
those of Modified Dotson [12], PP-F2TDN [9], Reduce & Factor 8], and Reduce &
Partition [3] algorithms. The parenthesized numbers for the FAPSAs in the table
represent the number of paths found, (the number of events in [3]), to evaluate the
exact system reliability. These numbers can be compared with the number of events
in [3]. The results of Reduce & Partition algorithm in Table 1 are the case where one
processor is employed.

— 141 —

R(G)=0.997186288578 R(()=0.998058891278 R((G)=0.997120396388
(a) (b) (c)

Figure 3. Examples for Comparisons

Table 1. Computation Times (sec) of FAPSAs and Other Algorithms

Algorithm Computer Language Ex.(a) Ex.(b) Ex.(¢)

Modified-Dotson H. DSP-66 FORTRAN 68.9

Reduce & Factor Mac. plus Pascal 61 1200
PP-F2TDN Mac. 11 Pascal 1.22 15

Reduce & BBN C 0.55(82) 7.9(1120)

Partition Butterfly

FAPSA-1 IBM-AT C 14.18(14338) 17.63(20066) 420(373091)
FAPSA-2 IBMAAT C 0.11(74) 0.94(869) 17.24(12432)
FAPSA-3 IBM-AT C 0.11(74) 0.88(590) 13.57(6895)

FAPSA-1 does not use any reduction techniques, FAPSA-2 applies just parallel
and series reduction techniques, and FAPSA-3 uses all the types of reductions shown
in Figure 2. If we compare FAPSA-1 with the Modified Dotson algorithm, and
FAPSA-2 with PP-F2TDN, Reduce & Factor, and Reduce & Partition [3] algorithms
which mainly apply series and parallel reduction techniques, the results show that
FAPSA gives us much better performance than other algorithms. The number of
paths found by FAPSA-2 is smaller than that of Reduce & Partition though both
algorithms employ series and parallel reductions equivalently. This may come from
the differences in efficiency of the methods. Thus we may say at least that the s-t
shortest path searching rule in [3] is not devoted critically to reducing the execution
time as compared to the time spent to find the shortest path. In our opinion, the
backtracking method provides more advantages systematically by requiring a

— 142 —

smaller execution memory size, and by reducing the problem sizes efficiently. If a
parallel computer is available, FAPSA can also be modified for the paralleled
operation, which is the most attractive feature in [3], in processing flow at each node
on a path.

V. AN EXAMINATION OF RELIABILITY BOUNDS

The FAPSA searches a minimal path from source to sink initially and then
travels to find augmenting paths. Due to the searching behavior of the FAPSA, the
algorithm also gives information on cuts and it sequentially accumulates the flow
quantities which are blocked by a cut as well as the flow quantities sent to the sink
whenever an augmenting path or cut is found. Thus we have:

a c
Lh=RG)=1-T1, (6)

where a denotes the total number of augmenting paths and ¢ is the total number of

cuts found. Thus the system reliability bounds can be obtained by:
a' c'

LASR(G)<1- L1, (7)
where a¢'<a and c'<c.

When all edge success probabilities are 0.7 for the network shown in Figure 3.(b),
Figure 4 shows the upper bound and the lower bound for the system reliability as the
number of augmenting path increases.

Two methods of approximating system reliability can be considered:

Method 1: Skip augmenting for the remaining flow at a node on a path which
is less than a given threshold value e.

Method 2: Stop the evaluation when the difference between the upper and
the lower bounds is less than a given precision ¢'.

Method 1 not only reduces execution time but also provides in general tighter
bounds than Method 2. On the other hand, Method 2 does not save execution time
much since FAPSA moves to other nodes for augmenting after finishing augmenting
for the remaining flow at the current node as explained previously. With Method 2,
however, we can control the interval between upper and lower bounds. Thus Method
1 may be more proper for the reliability approximation. Table 2 presents the
resulting bounds and computation time for the network shown in Figure 3.(c)
(Examplec) with each edge success probability being 0.9 when Method 1 is used
with given threshold values.

— 143 —

Reliability

Figure4. Lower and Upper Bounds

¥ T
38 a00

Number of Found Paths

Table 2. Reliability Bounds for Example (c) by Method 1

Threshold ¢

Computation Time

Reliability Bounds

Lower Bound

Upper Bound

10-10
109
10-8
1077
1076

13.46
13.23
11.37
8.07
4.44

|

%6878

6611
5523
3816)
1970)

|

0.997120395485
0.997120294270
0.997116811099
0.997070492569
0.996683754279

0.997120395485
0.997120419430
0.997121062645
0.997127126476
0.997159765971

We presented the flow augmenting path search algorithm to evaluate the exact
2terminal reliability of a network system. According to the types of reduction
techniques employed, the algorithm is classified into three versions (FAPSA-1,2,3),
for comparisons with other algorithms. The computation time of FAPSA is
relatively smaller than that of other algorithms. The observed unreliability which is

found sequentially may make it possible for us to control the computational time by

VI. CONCLUSIONS

obtaining reasonable bounds for a highly complex network.

FAPSA could be extended to the K-terminal problem by replacing a path with a
spanning tree which connects K terminals. Also the algorithm can be modified for
cases where reliability problems are integrated with other constraints such as

capacity, distance, time, and so on.

— 144 —

Acknowledgement

This research was partially supported by the Korea Telecommunication Research

Center (KTRC).

1]

[9]

REFERENCES

K. K. Aggarwal, "Integration of reliability and capacity in perfofmance measure
of a telecommunication network," IEFEFE Trans. Reliability, Vol R-34, 1985 June,
pp 184-186.

S. H. Ahmad, "A simple technique for computing network reliability," IFEE
Trans. Reliability, Vol R-31, 1982 April, pp 4144.

N. Deo, M. Medidi, "Parallel algorithms for terminal-pair reliability," IEEFE
Trans. Reliability, Vol R-41, 1992 June, pp 201-209.

W. P. Dotson, J. O. Gobien, "A new analysis technique for probabilistic graph,"
IEEE Trans. Circuit and Systems, vol 26, 1979, pp 855-865.

G. S. Fishman, "A Monte Carlo sampling plan for estimating network
reliability," Operations Research, vol 34, No. 4, 1986 Jul-Aug, pp 581-594.

C. H. Jun, S. M. Ross, "Variance reduction in simulation via random hazard,"
Probability in the Engineering and In formational Sciences, 6, 1992, pp 119-126.

S. H. Lee, "Reliability evaluation of a flow network," IEEFE Trans. Reliability,
Vol R-29, 1980 April, pp 24-26.

L. B. Page, J. E. Perry, "A practical implementation of the factoring algorithm
for network reliability," IEEE Trans. Reliability, Vol R-37, 1988 Aug, pp
259-267.

L. B. Page, J. E. Perry, "Reliability of directed networks using factoring
algorithm," IEEFE Trans. Reliability, Vol R-38, 1989 Dec, pp 556-562.

[10]K. S. Park, B. C. Cho, "RAPID: Recursive algorithmic pivotal decomposition

program for complex structural reliability analysis," IEEE Trans. Reliability,
Vol R-37, 1988 April, pp 50-53.

[11]R. K. Wood, "Factoring algorithm for computing K-terminal network

reliability," IEEE Trans. Reliability, Vol R-35, 1986 Aug, pp 269-278.

(12}Y. B. Yoo, Narsingh Deo, "A comparison of algorithms for terminal-pair

reliability," IEEE Trans. Reliability, Vol R-37, 1988 June, pp 210-215.

- 145 —

