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ABSTRACT

We consider a B/G/1 queueing system with vacations, where the server
closes the gate when it begins a vacation. In this system, customers arrive
according to a Bernoulli process. The service time and the vacation time
follow discrete distributions. We obtain the distribution of the number of
customers at a random point in time, and in turn, the distribution of the
residence time (queueing time + service time) for a customer. This system
finds an application in the performance evaluation of the DQDB protocol
which has been adopted as the standard protocol for IEEE 802.6 MAN.

I. Introduction

We consider a discrete time B/G/1 gated queueing system with vacations where the
server closes the gate when it begins a vacation. Time is divided into consecutive fixed-
length slots. Customer arrivals are assumed to occur at the beginning of time slots
according to a Bernoulli process. The service time and vacation time are limited to take
only nonnegative integer multiples of a slot time. The system is assumed to have

infinite buffer with FCFS queueing discipline.

Analytical models exist for the continuous time M/G/1 gated queueing system with
vacations where the gate closes when the server ends a vacation [Fuh84]. However, to our
knowledge, the system we consider here has not been analyzed before. Moreover, the
system finds an application in analyzing the queueing behavior of data packets and

transmission requests in a station within IEEE 802.6 MAN.



II. Analysis

The gated service mechanism we consider is different from the gated service
mechanism usually considered in the literature in which the server closes the gate when
it returns from a vacation and serves the customers that arrived during the previous

cycle. In our model, the server closes the gate when it begins a vacation. That is, if we
number the sequence of vacations and service periods as (vn, tn), n = 1, ..., then the

customers arriving during vacation vy and service period t are served during to1

It is well known that for several specific models of an M/G/1 queue with vacations, the

following property holds {Fuh84].

M/G/1 Decomposition Property. The stationary number of customers present in the
system at a random point in time is distributed as the sum of two or more independent
random variables, one of which is the stationary number of customers present in the
corresponding standard M/G/1 queue (i.e., the server is always available) at a random

peint in time.

Fuhrmann and Cooper demonstrate that this decomposition property also holds for a very
general class of M/G/1 queueing models including the standard gated system [FuC85]. It
can easily be seen that the M/G/1 decomposition property also holds for our B/G/1 gated

model. The result obtained by Fuhrmann and Cooper is stated in the following Lemma.

1-o(z)
Lemma g(z) = fz) (D1 -2) ™z), (1)
where g(-) = the p.g.f. for the stationary distribution of the number of customers that a

random departing customer leaves behind in the vacation system,

()

the p.g.f. for the stationary distribution of the number of customers already
present when a vacation begins,

aof-) = the p.g.f. for the stationary distribution of the number of customers that
arrive during a vacation,

n(-) = the p.g.f. for the stationary distribution of the number of customers that a
random departing customer leaves behind in the corresponding standard
M/G/1 queue (i.e., the server is always available). |

In the following discussion, we first derive f(-), a(:), and n(-) for the general discrete-
time gated system with vacations where the gate closes when the server begins a

vacation.



a. Derivation of n(-)

Let bk denote the probability that a service takes k slots of time, k=0, 1, 2, -, and let B(z)

denote its z-transform. By definition,
Bz) = E by, 2°. )
k=0

Let Pj denote the probability that j customers arrive during a service. Then,

v (%) Jopkd .
Pj - %;J (J ) V‘(]-—P) bk) J—O: 1’ 2: . (3)

Note that the term p in (3) is the parameter for a Bernoulli arrival process.

If we now define the probability generating function of the number of customer arrivals

during a service period as

hz) = 3 P2, (4)
=0

then, it is easily seen that

- (1-p) (z—=1) h(z)

n(z) z - b(2) ) (5)
where p = p B'(1) (see [Coo81], p. 212-216, for an analogous result in continuous time).
Substituting (3) into (4), we have

oo co oo k
k . ki . k . ki
h(z) = F) Pa-p b 7 = J) e a-p*?
55 () ro-tind= 2 2 () b,
= Ebk(l—p+pz)k= B(l—p+p2). (6)
k=0
Substitution of (6) into (5) gives
w(z) = (1—p)(z—1)B(1—p+pZ)' .

z - B(1 —p + pz)



b. Derivation of of(.)

Let Vi denote the probability that a vacation takes k slots of time, k = 0, 1, 2, -, and let

©(z) denote its z-transform. By definition,

o(z) = Y vkzk. (8)
k=0

Let Qj denote the probability that j customers arrive during a vacation. Then,
- (kY ks .
QJ.: S, )ra-pv, j=0,1,2, - (9)
ks M k

Therefore,

oo oo oo o k
_ P k . ks P k PN
a(z) _jz;Oszl - jz;og;j (J. ) Pa-pv 7= k§0j§0 (j ) (2 (1-pF7 v,
=k20(1—p+pz)“vk = ®1-p+p2). (10) m

¢. Derivation of f(.)

The term f(.) is derived as follows. Note that the gate closes when the server begins a
vacation. Let N denote the number of customers present in the system when the vacation

begins. Then,

PN=j) = kz P(N =k} A(j| v+B*®)}, (11)
=0

where A j| V+B*(k)} is the probability of j arrivals during {a vacation followed by the
sum of k service periods}. Note that B*¥) is the convolution of k independent service.
Also note that V and B*¥ are independent.

k
Letbj( )denote the probability that a k-fold service period takes j slots of time. Also let

B(k)(z) denote its z-transform. Then, since the service times are independent, we have

8z = % ks(k)zi = Bk, (12)
J=



Let A(j| m, n) denote the probability of j arrivals during a vacation of length m (units in
slots of time) followed by a service period of length n. Then, conditioning on the number

of arrivals during the vacation, we obtain
m m . . n - . . .
AGlmn = 3 (7) v a-pm () # a-ps. (13)
bt

Thus,

A(G] vaBsy o z ZOA{JI m,n) v_ b(k

m=0

e oo M

- 3 3 3 (7)ol a-pmi (1) dla-pred v, o) (1)

From (11) and (13), we obtain

o0 oo

f(z) 2 PN=jj7 =Y z P(N =k) A(j; v+B*¥)) J
j=0 k

oo

-3 éP{N:kl{ 3 3 3 (T)ela-pmi (8)Ha-pmidy (k)}zj.

=0 k=0 m=0n=0 i=0

After some modest algebra, the above equation reduces to
fz) = fiB(1-p + pz)) &(1-p + p2). (15)

Refer to <Appendix> for the detailed derivation of equation (15). Note here that B(1-p+
pz) is the z-transform of the number of arrivals during a service period and &(1 - p + pz)

is that of the number of arrivals during a vacation period. |

In equations (7), (10), and (15), we derived the discrete time version of f{.), a(-), and =(.)
in terms of B(-) and ®(-). It is interesting to note that the term (1 — p + pz) in f{.), a(.), and
n(-) is replaced by (A — As) in the well known continuous time case where the server

closes the gate when it returns from a vacation.

Now we let W(.) denote the distribution function of the residence time (queueing time +

service time) of an arriving customer in a vacation system with a FCFS queueing
discipline, and let W(-) denote the z-transform of W(). Let Wl(-) and Wl(-) denote the



analogous functions for the corresponding standard B/G/1 queueing system (the system

without vacations).

Remark 1 Note that g(-) and n(-) are also the p.g.f. for the number of customers present
in a vacation system, and in the corresponding standard system at a customer arrival
epoch. This alternate interpretation follows from a theorem by Burke (see [Coo081], p.
187).

Remark 2 Note that under a FCFS queueing discipline, the customers that a departing
customer leaves behind are precisely those customers who arrived during the departing

customer's residence time.

Thus, if we let W, k = 0, 1, -, denote the probability mass function of the residence time

in the corresponding standard system, then

oo

- (kY i ki i _ k J (1 - pyd

= 3 wk(l—p+pz)k=W1(1—p+pz). (16)
k=0
It is easily seen that the same argument holds for the vacation system. That is,

g(z) = W1 -p +p2). (17)

Substituting (16) and (17) into (1), we get

W(l—-p+pz) = f{z) ﬁg-(—_z_)—z) Wl(l—p+pz), or (18a)
z-(1-p)
-—o(—)
W) = f( z“p"p’) La W@ (18b)
a'(1)(1 - o )

We can now easily obtain the first and second moment of the residence time distribution

from equation (18b).



III. Conclusion

In this note, we considered a discrete time B/G/1 queueing system with vacations, where
the server closes the gate when it begins a vacation. We obtained the distribution of the
number of customers at a random point in time, and in turn, the distribution of the
residence time for a customers. It is noted that solutions for our discrete time B/G/1 gated
vacation model are analogous to those for the continuous time M/G/1 gated vacation
model. That is, the term (A — As) in the continuous case_is replaced by (1 — p + pz) in the

discrete case.

<Appendix> (Derivation of equation (15))
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= 120 P{N =k ( Eovm (1-p+ pz)m)(%bﬁk)(l -p+ pz)nJ
= ms= ns=

Z =k} (1 -p + pz) B(k)(l—-p+pz)
Z =k B -p + p2)}* &1 p + pz)
= f(B(1 -p + pz)) ®1 - p + pz). |
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