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Abstract

A generalization of one machine maximum lateness minimization
problem is considered. There are one machine with controllable speed
and n weighting jobs Ji,J = 1,2,--.,n with ambiguous duedates.
Introducing fuzzy formulation, a membership function of the duedate
associated with each job Jj, which describes the satisfaction level with
Tespect to completion time of J;. Thus the duedates are not constants
as in conventional scheduling problems but decision variables reflect-
ing the fuzzy circumstance of the Job completing. We develop the
polynomial time algorithm to find an optimal schedule and jobwise
machine speeds, and to minimize the total sum of costs associated
with jobwise machine speeds and dissatisfaction with respect to com-
pletion times of weighting jobs.

Keywords : Fuzzy duedate, Variable Machine Speed, Weighting Jobs,
Scheduling, Combinatorial Analysis

1 Introduction

The classical problem of scheduling n jobs with duedates on a one m.a.chine
has been extensively studied and has various variations. Man?' vanat_lons of
the scheduling problem have been proposed from the viewp.omt of dlﬁ:erent
optimality criterion. Examples are maximum lateness, maximum tardiness,
certain function etc. J.R. Jackson solved a one machine maximum lateness
minimization problem by using the earliest duedates first rule in O(nlogn)
computational time [1][2]. .
However, there exist many real situations that any constant, as in t.he
conventional scheduling problems, is not sufficient to completly characterize
the duedate. That is, the duedates is not rigid in some situations and some
violations may be accepted. And we may weight the jobs accordingly, sirllce
some jobs may be considered more important than oth(?rs. .Further macl?me
speed can be changeable jobwise. This variation is practical in many applica-



tions. A typical example is a writer’s scheduling problem. A famous writer is
responsible for manuscrips by closing-dates {from publishing companies with
different authorities. The writer wishes to establish a writing schedule and
speeds of writing manuscrips, subjectively. Usually, The more he evaluates
authority of publisher highly, the more he recognizes the closing-date of the
publisher severely. And the existance of easygoing gab from the closing-date
asked by publisher loosely to the deadline for real publishing may make the
closing-date ambigous. As another example, consider the building indus-
try. The duedate of construction is to be ambigous since it is influenced by
internal or external factors, that is, materials, worker, climates, war etc.

Thus the viewpoint of above concept of duedates, it is necessary to in-
vestigate not rigid constants as in the conventional scheduling problems but
decision variables reflecting the fuzzy circumstance of the weighted job com-
pleting. As for changeable machine speeds, E. Nowicki & S. Zdralka consid-
ered on a two machine folw shop [3].

Considering these cases, this paper investigates the problem of schedul-
ing weighted n jobs with fuzzy duedates on a one machine with controllablc
speeds. The objective is to find an optimal schedule and jobwise machine
speeds, and to minimize the total sum of costs associated with jobwise ma-
chine spees and dissatisfaction with respect to completion times of weighting
jobs.

Section 2 introduces fuzzy duedates with membership functions describing
the degree of satisfaction with respect to job completion times and formulates
the problem P. P is first transformed into equivalent problem P. Then P
is divided into subproblems Py, P,,---, P,. Section 3 proposes an algorithm
solving each subproblem F; and gives a polynomial solution procedure for
P. Finally, section 4 summarizes this paper and discusses further research
problerns.

2 Problem Formulation

This paper makes the following assumptions.
(1) There is one machine with changeable speed for each job.

2) The n jobs Ji, Js,- -+, Jp, to be processed on the machine, are weighted
; g
by importance.

(3) A degree of satisfaction with respect to the completion time is associated
with each job, which is denoted with a certain membership function of
a fuzzy set defined on R* (Nonnegative part of real number). This
reflects the actual situation that earlier completion will give us more
satisfaction.

(4) The objective function consists of costs related to minimal satisfac-
tion(maximal dissatisfaction) with respect to completion times of jobs
and jobwise speeds. That is, if we speed up the processing of jobs,
completions of jobs become earlier and the degree of satisfaction is im-
proved. But it makes the running costs and burden of the machine
larger, and furthermore, the quality of products may become worse. So
we must balance them.



We scek the optimal schedule and optimal jobwise speeds of the machine
ninimizing the thove mentioned objective function.
First we iise ap notations used in this paper.

w; 3 weight of job J

s; ; speed when machine processes job J;,

p; ; processing amount of job J; (processing time at unit speed of the ma-
chine),

C; ; the completion time of job Jj,

m,;(C;) ; the membership function denoting degree of satlsfactlon with re-
spect to C;, which is defined as follows:

1 (C; < dj)
d;
(Ce ) (dj < C; < dj +¢;)
2
0 (dj +¢; < C))

m;(C;) =4 1-

where e;, d; are nonnegative constants.
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Figure 1. The membership function denoting degree of satisfaction with
respect to C;.

Further we use the notation s; & 1/s’; for a convenience sake.
Under the above setting, we consider the following problem P.

P : Minimize —ao mm {w; - m;(C;)} +EGJ s
=
subject to s;>0, 7=12,-

where w;, a;, 7 =0,1,-+-,n, are positive constants.



Now let
g; = min{w; -m;(C;) | j =1,2,---,n}, t = min{g;}
then inequalities
Cj—<-dj+(l—£;)ej’j:1’2!'“)n (1)

must hold. Note that the right hand side of each inequality corresponds to
the ordinary duedate of job J;.

Let (k) denote the k-th job index of a schedule 7. Then for ,

k
Crar Zm)sm)’ =12-n (2)

After variable transformation, p; = p;s;, j = 1,2,--+,n, we set a; =
a;,p;, 7 =1,2,---,nand t = w; —t. Then P is equivalent to the follow-
ing problem P.

P . Minimize aof + > (a/p;)
ko 7
subject to Zp,,(,) <d ex(k)y K=1,2,---\n
1=1 k)
b, >0v ]_ 1,2,'-',71, OS{SUJ}, WGH’

where I is the set of all permutation schedules. Note that p; is the actual
processing time of ./;. When  is fixed, P seeks an optimal schedule and op-
timal processing time of each job J; minimizing ¥_7_,(a,/p;) under duedates
d; + eJ, J=12,---/n. In this case, an optimal schedule is obtained by

processmg jobs in a nondecreasing order of d; + e,, J=12--,n[2).
Defining,
e
=(d; = dp)/(— — 2
i = (s = /(2 - )

for j # k, and sorting different 7, , let
0"—'{0 <t_1 < - <fq=n1in{wj}.
3

By dividing the above interval into subintervals T; = [t;_y,%), i = 1,2,-- -, q,
we introduce the following subproblems B, { = 1,2,---,q, since a certain
schedule m is always optimal on T}, I = 1,2,--- 4.
B : Minimize aol+ Z(&j/pj)
1=1
subject to EPM(J) < dryr) +

=1
0<t§wJ,tGT,,pj>0,j=1,2,...,n

)e,r,(k), k=12---,n

Thus the best solution among optimal solutions of Py, P,, - - , P, is an opti-
mal solution of P and the corresponding schedule is an optlmal schedule



3 Solution Procedure of P

First we propose a solution procedure of subproblem B. For convenience, we
suppress subscript { in order that any confusion does not occur. Further let
its optimal schedule be m(j) = j for easiness of explanation by changing the
job number if necessary.

Now let define functions f(f), h(f) as follows:

HO) = Min {5 (6/0) | Srs St en, pa >0, k= 1,200m),

1=1 1=1

hi) = aot+ f(1).

Theorem 1 f({) is nonincreasing and a convez function of t € T;.

Proof : Nonincreasingness of f(f) is clear and so we show its convexity
only.
For t,,ts € T, let

fE) = };(aj/p;), F(Es) = ﬁé(a,/pf)

respectively. And for f, = Mo + Mg (0< A<, A=1-)),let

) = 3@/,

=1

Then since
x -

k k
(] kY a 7
YO8 +3E) =2 s+ Z < Ade + _ek) + 3(de + __ek) gt e,
s

=1

p;.’ = /\p;-' + Xp? is feasible for £ = £,.
Thus

f) = Z(GJ/P, Si:aj/l’

< A/ + AL @) = M) MG, ©)

where the second inequality holds from the convexity of the function 1/z.
(3) shows convexity of f(f). [

Theorem 1 implies h(f) is convex. Now we propose a calculation method
of f(i.) for each f. € T;. First we introduce the following Lagrange function
L("). ’

n _ n k t_c
L(ul) oy Uny Pyt )pﬂ) = E(aJ/pJ) + Z uk(z p;— dk - —ek)’ (4)
1=1 k=1 =1 Wk

where uy,us, - -+, u, are Lagrange multipliers and restricted to be nonnega-
tive. Let us define



L(ul,U2,“ ')un) = min{L(ulrul’y“ *yUn, P1, P2, " )pn) l P1,P2,° "y Pn > 0}

Then
f(t-C) = ma‘x{L(ulyuZ)' o :un) l Uy, Uyt * ", Uy Z 0}

by the theory of convex programming. Since it holds that
n n k t_c
L(Ula *ttyUn,Pryc apn) = E (aj/Pj) + E uk(zpk —di — '—ek)
5=1 k=1 j=1 Wk

= i {(a.l/pl) + P; Xn:uk} - Z": (dk + ;;:ek)uk

=1 k=j k=1
n n n i"

S SEN D ST ST PR
j=1 k= k=1 Wk

by the relation between arithmetic and geometric means,

L(ul,"‘,un)=2§\/57j iuk_él‘k(dk.*-‘l%‘ek) (6)

k=jy

and (6) is given by

. Lo
pi=(aj/zuk)’) .7:1)2)"')”-

k=3
Hence let
Yk = Zuj, k=12-.-,n
1=k
then
uJ'=yJ;)—yJ2+l’ j=112)"';n—1! uﬂ=y12| (7)
and
Y1222 2y 20 (8)

by the nonnegativity of u;, 7 =1,2,---,n. Substituting (7) into (6), then
L(ul) o )un)
n n—1 t-c
= 23 \/au = 20 — Ga)(-e + d)
J'=1 j=1 J
t. -
= ‘{yf(‘w—el +di) — 2Vain}
1
s :
= 2l {o(e — eima) + (dj — di-1)} - 2/35)]
=2 2
L — b
= - Z{w—(ej —ej-1) +dj = djma}y; — /3 /{—(e; —ej-1) + d; - d;1}F
j=2 f)
3 i _ g te
(e + Ay~ VES(Zey + )Y+ f(ey + dy)
w w w,

n {c
+ Zaj/{g(e, —ej-1) +d;j —d;1}
J

7=2

%

9(y1,¥2,-+, Un)- (9)



Now we define ,, 8; and v;, 7 =1,2,---, n as follows;

Y = aj)j:]-;z:"')n)
L, Z,
7

te
B —e+dy, f;= <
U w,

a; = (7j/:3j)1 .7: 1)2)""""

Using these notations,

It

(ej—ej—1)+dj_dj—la j=2)3)"')n)

9(y1, 92, 4n) = = X Biyi — o) + D v2 /B,
=1 =1

Theorem 2 (i) If a; > o441, 1,2,---,n— 1, then

f(i) = 2 v/,

by settingy; = a5, 7=1,2,---,n.
(i1) If for a certain 1,
o < Qi1

then a solution giving f(I.) satisfies

Yi = Yiv1-
Proof : The former part (7) is clear. For the latter part (41), it is sufficient
to show 7 with #; > §;+1 never maximizes g{y1, Y2, ", ¥n)-

First note that y must satisfy y; > y;4+1, 7 = 1,2,---,n — 1 from (8).

So we can not set y; = @;, Yis1 = @41 We show (i7) by checking following
cases.
Case (1) ; Fi+1 > i

When y; — o;, g(-) increases, i.e., setting y; = yi41 produces better
solution than .

Case (2) ; 7i > o > Fisr-

As y; | o; and 941 T aiy1, g(-) increases, i.e., by decreasing y; and
increasing y;41, the value of g(-) is improved. But due to the constraint
¥; > vis+1, the above change produces the solution y; = yi41, and it is better
than 3.

Case (3) ; & > ;.
Case(3) implies
Qi1 > 0 2 Yi > Yigr (10)
Again, as y; T o; and yiy1 T g1, g(-) increases. By (10) and the fact that
Yi+1 can not increase above y;, yi41 = ¥; is necessarily reached by the process.
-

When case (iz) of Theorem 2 occurs, i.e., there exists i such that o; < a4,

we can update y;, o, B; ,7; as follows.

!

Y = Y5p ﬁ_;':ﬂj) ’Y_;:’\/] (Cl;=aj),j=l,2,"',i—l,

Y= oy, Bl=Bi+ B, Vi =%+ w1 (o = (% + w41)/(Bi + Biv1))
and (11)
y; = Y+ :B;: 3+ 1 7;=7]+1 (a;=a]-+1), ]=z+1,,n—1



Above updating of (11) induces the updating of g(-), and results are as fol-
lows.

n—1 n—1
2 2
9@ Ynat) = = 2 By — ) + 2B, (12)
1=1 1=1

For the revised g(-), we check the condition of Theorem 2 again. Note that
g(¥4, -+, ¥h_y) is the very same type of g(y1,72, -, ¥n). After each check,
either the number of variables is decreased by one or the condition () of
Theorem 2 is reached. Therefore after at most (n — 1) updatings of g(-),
the condition (i) of Theorem 2 occurs, and f(Z.) and corresponding (y,) are
found. The type of g(-) is not changed independent of the value .. Of course,
a;, is the function of { and so we describe o; with a;(f). According to the
value of £, the ordering of ;(f) is changed, i.e., which condition (7) or (i7) of
Theorem 2 occurs is changed.

Here we denote optimal value of { with £* and its corresponding optimal
solution (y;). Now we are ready to give an algorithm for P,1=12,-q,
which is based on the same principle as Megiddo’s [4].

Algorithm for B

R
G
f

«a/(wilel +d) (= n@/AD),

a,(?) \/a—j/{i;(ej —ejo1)+d; —dioi} (=v(D/B8;(D), 1=2,3,--,n,

and s = 1.
Step 1 : Find #* satisfying a,() = a,+1(f).
Step 2 : If{* ¢ T}, then go to Step 4. Otherwise, go to Step 3.

Step 3 : Calculate f({*) and corresponding y*. Next calculate its subdif-
ferential 8f(#*). If 9f(t') = —ao, then set £* = {* and calculate (p})
from (y;), and terminate. If min{p | p € 3f(f*)} > —ao, then set
Ty = TiN[ti-1,%°] and go to Step 4. If max{p | p € 8f(*)} < —ao, then
set Ty = Ty N [{*,1;] and go to Step 4.

Step 4 : If o, > o,41, then go to Step 5. Otherwise, set
¥y = Un ﬂJ::B]) Y=Y (aj=a1)1j=1121"'1s—1a
Ys = Y1y ,3, = ﬂs + ﬂa-i-l, Vs =Y + Vs (Ct, = (7.1 + 'Ys-H)/(ﬂs + ﬂs-{»l))
Y5 = Yj+1, ﬁj‘_“ﬂj+l) Y; = Yi+1 (a12a1+1)) j=s+1,---,n—l,
and n=n — 1. Go to Step 6.

Step 5: Set s=s+ 1. If s = n, go to Step 7. Otherwise, return to Step
1.

Step 6 : If s = n, go to Step 7. If s = 1, return to Step 1. Otherwise set
s = s — 1 and return to Step 1.

Step 7 : Based on all informations about y;,0;, j = 1,2,---,n, seek for
t° satisfying % f(f) = —ao. If there exists such #°, then set * = #°,



calculate (p;) from £ and terminate. Otherwise, set

o fie1 (if&f(f) > —ao on the current T})
Tl b (if5f(}) < —ap on the current T})

then calculate (p;) from * and terminate.
Solution Procedure for P

( I) Solve all P, according to the above algorithm.

(II) Choose the best solution among optimal solutions of P’s and calculate
an optimal schedule and optimal jobwise machine speeds from it.

Theorem 3 If nonlinear equation

Z F./(D, + E,'zl)2 =A

=1
is solved in O(n®) computational times, our procedure solves P in O(n*)
computational times.

Proof : Validity is clear from the above discussions. For the complexity,
first we show the complexity of our algorithm for P,. the computational time
of each step is as follows. :

(a) O(n) to calculate f(£*) in Step 3.

(b) It takes O(n) from Step 1 to Step 6.

(c) From (a) and (b), O(n?) till Step 7.

(d) By assumption, it takes O(n?) in Step 7.

In total, O(n?) for each B.
Since the number of P is at most O(n?), O(n*) computational time is enough
to solve P by our procedure. ]

4 Discussion

This paper considered one machine weighting jobs scheduling problem with
fuzzy duedates. Though a linear membership function is not enough to de-
scribe an actual situation of flexible duedates, we think it is a first attempt to
generalize an ordinary scheduling problem into a more flexible model by fuzzy
duedates. In this sense, other factors such as processing times[6], precedence
relations [9)etc. may be also fuzzified, and generalization of membership
function as variable, non-linear form may be investigated. But our solution
procedure does not utilize this structure of fuzziness enough. So refinement
to our model may be the first effort to be done.

Whether investigations of a so called ”fuzzy scheduling model” are suc-
cessful or not, depends greatly on the degree of difficulty of original model. In
summary, we think this generalized area of scheduling theory may be fruit-
ful and interesting, and many issues are left remained without any study.
Especially our model has a single objective and it may not reflect actual
situations and so a multi-objective model of scheduling problems [7][8][9]are
to be fuzzified and solved.
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