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Abstract

Many business forecasting problems are characterized by infrequent occurrences, a large
number of variables, presence of error, and great complexity. Because no forecasting models and
tools are effective in handing these problems, managers often use the outcomes of past analogous cases
to predict the outcome of the current one. They (1) observe significant attributes in describing a case,
(2) identify the past cases similar in these attributes to the current case, and (3) predict the outcome of
the current case based on those of the analogous cases identified through some mental simulation and
adjustment. This process of forecasting can be termed forecasting-by-analogy. In spite of fairly
frequent use of this forecasting process in practice, however, it has not been recognized as a primary
forecasting tool, nor applied on a regular basis. In this paper, by automatizing this process using
computer models, we develop a case-based forecasting system (CBFS), which identifies relevant cases
and applies their outcomes to generate a forecast. We demonstrate the effectiveness of the CBFS in
terms of its accuracy in predicting the outcome of the current problem based on the similar cases
identified. We compare the forecasting accuracy of the CBFS with that of regression models
developed by stepwise procedure under varied simulated problem conditions. The CBFS outperforms

regression models in most comparisons. The CBFS could be used as an effective forecasting tool.
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1. Introduction

In modern business management, managers frequently face prediction or forecasting tasks of
extreme complexity, ambiguity, and consequence. To help managers cope with these issues,
academicians and practitioners have developed a number of forecasting models and techniques. When
the forecasting problems have been inherently well structured and the necessary data readily available,
they have produced impressive results (e.g., econometric models and time series analyses). However,
it seems problematic when (1) only meager data points are available, (2) too many variables are
involved, (3) the relationship among variables is complex, and (4) a large amount of error is involved.
Unfortunately, many business forecasting problems (e.g., new product forecasting, business strategy

forecasting, and so on) fall into this category.

As a result, managers often use their intuitive judgments to make predictions based on a few
past cases available. They identify the most important elements of a problem, retrieve the most
relevant past cases in these elements, relate the current problem to them, and make a prediction based
on outcomes in the past through some mental simulation and adjustment. This process of forecasting
by applying intuitive judgment from analogous past cases to predicting the current problem can be

termed "forecasting by analogy."

Analogy has provided a viable means for making predictions and business forecasting. The
potential of analogy in prediction and forecasting has been recognized and discussed by many
researchers (Burke 1991; Choffray and Lilien 1986; Easingwood 1989; Mahajan and Wind 1988;
Mullick et al. 1987; Thomas 1985; Wind, Mahajan, and Cardozo 1981). For example, a new
product’s performance can be predicted by investigating the performance of analogous products
marketed in the past, because products developed and marketed in similar situations are likely to
perform similarly in the market (Choffray and Lilien 1986; Mahajan and Wind 1988). Based on the
assumption that analogous products would follow similar sales paths and have similar diffusion

patterns, for example, Thomas (1985) and Easingwood (1989) showed how the diffusion of a selected,
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analogous product could be used as the basis for forecasting the diffusion of the new product. Burke
(1991) developed an analogical reasoning system for predicting consumer response to advertising

campaigns.

In this paper, based on this forecasting process, we develop a case-based forecasting system
(CBFS). A computer simulation study demonstrates the effectiveness of this forecasting system by
comparing its forecasting accuracy with that of regression models developed by stepwise procedure.
This forecasting system outperforms regression models in most comparisons under varied problem
conditions simulated. It is more robust against increasing amount of error, decreasing number of data
points, increasing number of variables, and increasing complexity of relationship between independent
and dependent variables. Therefore, this forecasting method is effective when (1) variable selection is
pecessary to apply forecasting tools because there are many independent variables; (2) there are only a
few data points in the dataset; (3) an amount of error is expected in the dataset; and (4) there are no
appropriate forecasting tools available due to the complex relationship among variables with non-

linearity.

In the next section, we discuss the development of a CBFS based on the managers’ forecasting
by analogy and then investigate the models and methods to implement the process. In Section 3, we
validate the potential of the CBFS by demonstrating its predictive accuracy vis-a-vis regression models

using simulated data. In Section 4, we conclude by suggesting future extensions of this research.

2. A Case-based Forecasting System (CBFS)

The forecasting process of case-based forecasting systems consists of three subprocesses: (1)
identifying key attributes in identifying similar cases to predict the target variable; (2) accessing
similarity and retrieving analogous cases; and (3) generating a forecast through combining similar

cases selected.
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Identifying key attributes is the subprocess of investigating the important attributes or factors

which are critical to identifying analogous cases, as well as to predicting the value of the target
variable. When predicting the performance of a new product by analogy, for example, this
corresponds to the process new product managers use to determine both the attributes which are most

effective in locating analogous products and the best predictors to the performance variable.

Similarity judgment and retrieval is the stage of noticing and measuring the similarities
between the past cases in the system’s database and the current forecasting problem using the
elaborated attributes, and retrieving the most similar cases from the database. For example, in
predicting the performance of a new product, it corresponds to identifying and retrieving analogous

products in the past from the database.

Generating a forecast is the final subprocess of case-based forecasting which proceeds by

mapping the outcomes of the selected analogous cases over that of the current problem. Depending on
the similarities of retrieved cases to the current problem, their outcomes are adjusted to generate a

consolidated forecast.

The development of a CBFS therefore requires models or schemes to conduct these three
subprocesses above: to identify key attributes, to estimate the similarity between cases, and to combine
some useful analogous cases to generate a forecast on the target variable. In this section, we discuss

models and methods to implement these three subprocesses.

2.1  Selection of Key Matching Attributes

To measure similarity between cases accurately, we must first decide which matching
attributes to use. Since many variables are used to describe a case, we can omit nonessential attributes
which are not useful in predicting the target variable. This allows the system to focus selectively on a

few important attributes to explain much of the similarity between cases. As yet, there is no
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commonly agreed upon procedure or method for selecting the optimal set of matching attributes for
identifying the most relevant cases in a multidimensional space. Recognizing the need for such a
procedure, however, we develop a model which could be applied regardless of the data structure (such
as multicollinearity or type of dependent variable). The model is derived from Ghiselli’s model which
represents the correlation between scores on an outside variable and scores on a composite variable
composed of I to k components (see chapter 7 in Ghiselli 1964). The model derived by Ghiselli is
represented as follows:
kp,

where p,. is the correlation between the outside variable (dependent variable) and the composite

)

Poc ™

variable composed of k component variables; p,; represents the average of the coefficients of
correlation between the outside variable and each component variable j; and p,. is the average of the
coefficients of correla‘tion among the component variables (mean intercorrelation). In the equation,
even when k goes to infinity, the correlation between the outside variable and the composité variable
does not become one, but converges to the ratio between the average correlation between the outside
variable and each component variable (p,) over the squared root of the mean intercorrelation of
component variables. Moreover, it converges very rapidly with a small increase in k (Ashton 1986;
Ghiselli 1964; Hogarth 1978; Libby and Blashfield 1978). It implies that even if we increase the size
of the component variable group, the correlation between the outside variable and the composite
variable is limited by the mean correlation between the outside variable and each component variable
and the mean intercorrelation among component variables, and does not improve after the component

variable group reaches 20 or so (Ashton 1986; Hogarth 1978).
Without losing the essence of Ghiselli's model, we have modified it to develop the proposed

mathematical programming model which selects the optimal set of variables to maximize the

correlation between the target attribute and the set of selected explanatory attributes, corresponding to

- 138—



outside variable and component variables in Ghiselli's model. The model' is represented as follows:

Yopyx
Max Z = — 4%
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Jl st
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where m is the number of all independent (explanatory) attributes; py is the correlation between the
dependent (target) attribute and explanatory attribute j; oy is the correlation between explanatory
attribute j and I. The variable x; represents attribute j and has a binary value of 0 or 1. In the
solution, if variable x, is I, then attribute j is selected; otherwise it is left out. We can also select a
certain number (k) of optimal matching attributes by simply adding a constraint of L, x; = k to this
model. The optimal function value of z represents the correlation between the target attribute and the
composite of explanatory attributes selected, and thus the effectiveness of the set of selected attributes

in predicting the target attribute.

2.2 Similarity Measure

The most obvious measure of the similarity (or dissimilarity) between two cases is the distance
between them. Weighted Euclidian distance has been recognized as one of the moét general forms of
distance function. The differential weighting of the component dimensions in the multidimensional
space is critical to the accurate measure of distance. There are several methods for assigning weights
to the matching attributes in this distance function. When no relevant information and tools are
available, the equal weighting scheme seems appropriate because it works substantially well and safely
enough not to assign weights inappropriately, i.e., assign heavy weights on less important attributes.

In equal weighting, each matching feature is equally important in the distance calculation. However,

! The complexity of this problem increases exponentially as the number of attributes to select and the total number of attributes increase.
We employ heuristics to increase the speed of computation by using the K-opt procedure where the number of maximum batch set of
attributes to consider for inclusion and exclusion from the selected set is limited by K (Potvin, Lapalme, and Rousseau 1989). In this
problem, we increase K from I to m, and stop just before the objective function value changes from increase to decrease. This heuristic
is widely used to speed up the exponential searching process. However, it may end up with a suboptimal solution. Another heuristic is
to reduce the search set by a preliminary screening of the candidate variables based on their mean correlation with the dependent variable.
Using these heuristics, the model can handle a large number of variables.
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effectively estimated weights should improve the accuracy of distance and similarity measures.

Using the available cases in the dataset, we can empirically derive the unequal weights using
some statistical analyses. One of these methods is to assign weights in proportion to the size of
correlations with the target variable (i.e., w, = | p; | + L, | p |). This weighting scheme, however,
does not consider the correlation among the matching attributes. As a slight modification to this
method, another weighting scheme can be used, considering both correlation with the target attribute
and the correlations among the matching attributes. In this weighting scheme, weights reflect both
correlation with the target attribute and the correlations among the matching attributes as
follows: w; = {pd + g Pa } * {:El [ Pa * ’2.1: Py ] } , where m is the number of matching attributes,
py is the correlation between the target variable and matching attribute , and p, is the correlation
between matching attributes j and I. Weights are proportioned to their contributions to the objective
function in Equation 2. A matching attribute is heavily weighted when it is highly correlated with the
dependent target variable but not so correlated with other matching attributes. Even though a

matching attribute is highly correlated with the target variable, if it is also highly correlated with other

matching attributes, it will not be weighted so highly.

Once the distance between two cases is measured, we derive inter-case similarity from
distance. There are various kinds of similarity measures based on the distance between objects.
Conceptually, any monotonically decreasing function of distance can be used to relate similarity to
distance. Some examples of these monotonic decreasing functions are mathematically and graphically

represented in Table 1 and Figure 1 respectively.
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Table 1; Mathematical Representation of Functions Relating Similarity to Distance
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In these examples, the parameter X is a scale parameter reflecting the tolerable boundary
distance from the target case. The cases only within the boundary distance A are considered to have a
certain level of similarity. Accordingly, the cases beyond this limiting distance (\) are regarded as the
ones not similar to the target case. However, we can also include all cases by setting X to be the
maximum distance. The appropriate value of this parameter A could be determined in terms of
variance of distances, the number of cases in the dataset, and so on. These issues are discussed in the

next section when we address the problem of determining the set of useful analogous cases.

2.3 Generating a Forecast by Combining Useful Cases
The next step is to accurately predict the target value for a new case by combining the values
of the most similar past cases. This process of integration is analogous to that of combining the

judgments of a number of experts or forecasts of various models.

There has been considerable research on the issue of combining judgments (Clemen 1989;
Winkler 1989). The focus of these studies has been the extraction of appropriate weights for each
individual forecast, i.e., the method of combining individual forecasts so as to maximize accuracy.

Depending on situational factors, a variety of weighting schemes have been studied. These have
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ranged from simple, equal-weighting methods to variable-weighting methods based on arithmetic and
geometric measures; from linear to non-linear methods; and from subjective to objective ratings. In
combining target values of multiple analogous cases, however, information about similarities between
the target and base cases provides guidelines for deciding which cases are more useful in predicting
the unknown variable (target variable) for the present situation. The more similar the cases, the more
effective they would be in predicting the target value of the current case. Whatever functional form

the weighting scheme takes, it should incorporate the information about similarities.

For this purpose, we develop a model based on the distribution of case similarities. In the

model, the expected target value (7V)) of the target case is derived as follows:

L] L] s
EQV, | 50a,) =8 P(TVp = TV, | {S)0,) TV, = Y | —2
. b=1
% S

b1

where » is the number of cases selected to generate the overall prediction’ S, is the similarity between
the new target case ¢ and the base case b, and TV, is the predicting (target) value of base b. In the
model, the similarity ratio (i.e., similarity of each base case with the new target case over the sum of
the similarities of all cases) is used as the case’s weight in the combining process. Thus, the combined
prediction (predicted target value) on the target value of the current case (7V)) is represented as a
linear combination of the target values of base cases, weighted in proportion to their relative

similarities to the current case.

Another important issue is to determine how many cases to combine to generate the system'’s
prediction. There is no clear answer to this question. Intuitively, however, it would seem that if we
combine many cases, the combined prediction will have a low variance but a potentially high bias
(toward the mean of the target variable). The converse would be true when small numbers of target
values are combined. Thus there is a fundamental tradeoff between bias and variance, governed by

the number of target values combined. The variance of combined prediction (o) decreases by the
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increasing number (n) of target values to combine (e.g., ¢°/n when target values are equally weighted
and combined). Increasing n increases the bias because the combined prediction involves more target
values of less similar cases, which are more likely to be different from the true value of target case.

Similarly, decreasing n increases the variance but tends to decrease the bias.

This tradeoff between bias and variance is similar to the question of how many variables to
include in a regression equation. Just as the optimal number of terms in the best linear regression
model varies, the optimal number of analogous cases to combine also varies with Veach target case.
This issue is also analogous to the question of how many judgments to combine in contexts where we
have multiple expert judges, because each analogous case provides a prediction on the target variable.
Hogarth (1978) and Ashton (1986) applied Ghiselli’s model and demonstrated its effectiveness in
evaluating the validity of combined judgments. According to Hogarth (1978), the validity of combined
judgments was repres;:nted as a function of the number of experts involved, their mean individual

validity, and the mean intercorrelation among their judgments.

We can apply Ghiselli’s model to this problem by substituting correlations among judgments
with similarities among cases (replacing correlations with similarities in Equation 2). In many
instances, correlations and similarities are highly correlated and covary: the higher the correlation, the
higher the similarity (see Sjoberg 1980). We can therefore replace the correlations in the model for
selecting attributes by similarities, to build a model for determining the number of cases to combine.
Thus, the validity (cf. Hogarth 1978) of the combined prediction can be represented as a function of
the number of base cases combined, their mean individual similarity with the target case, and the mean

similarity among themselves.

Due to the computational complexity, we slightly modify the model so that a similar case
always has priority over less similar ones in combination. To exploit the information from the cases

in the dataset for this decision, we estimate a parameter p in cross-validation using the cases in the
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dataset. The model is represented as follows:

S Y
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where n is the number of cases selected to combine, s, is the similarity between target case  and base
case b, and s, is the similarity between base b and base g. The variable y, represents case b and has a
binary value of 0 or 1. In the solution, if variable y, is I, then base case b is selected; otherwise it is
left out. The constraint ((s, - 5,.) * (¥, - ¥,) = 0) requires that a similar case always have the priority
over less similar ones in combination. The system combines the target values of the set of cases

maximizing this function value (SF).

The decision about how many cases to combine can also be made simply by assigning zero
similarities t¢ the cases beyond a certain distance from the target, and combining only the cases within
the boundary distance. The parameter A in the transformation functions in Table 1 represents this
boundary distance. The cases within the boundary distance of A are considered as useful analogous
cases with strictly positive similarities, while cases outside this boundary are not useful, and assigned
zero similarities. Thus the decision about how many to combine is converted to the accurate
determination of this parameter A. Lambda can be subjectively determined, or estimated through cross-
validation analysis using the cases in the system dataset. Cross-validation works by leaving cases out
one at a time, measuring its expected value using the remaining cases, and estimating the parameter A,

which minimizes the average squared prediction error as follows:

Minimize PSEQ\)y, oy vgiion = © LA _S“_(ﬂ_ 1, ©
* =les S,

There are a number of other alternatives for selecting the set of most similar cases to use in
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prediction. The decision can be made in terms of the distribution of similarities between the target
case and base cases in the knowledge base. That is, a certain percentile (i.e., a certain number of
standard deviations away from the mean) of most similar cases in the standard normal distribution of
similarities can be combined. Another option is to use the cases with similarities greater than a certain
threshold level of similarity, or to use a specific number of similar cases (e.g., 5 most similar cases).
For these methods, however, the percentage (the number of standard deviations), the level of
minimum similarity, or the specific number must be determined. They can also be estimated in terms

of cross-validation as discussed above.

3. Validation of the CBFS

A simulation study was conducted to validate the effectiveness of the CBFS. Data were
generated to simulate real forecasting problems. We compare the system’s forecasting accuracy,
reliability, and factors affecting its performance with those of regression models developed by stepwise
procedure. We also inspect which provides the more accurate and reliable forecast under which

conditions.

3.1 Data Generation and Measurement of Forecasting Errors (MSEs)

Values of independent variables are randomly generated from a uniform distribution between 0
and 1. An error term is also randomly generated from a normal distribution of N(0,1). The
dependent variable is created by adding a certain percentage of error to the value generated, using
independent variables in three different relationships (i.e., linear and non-linear (square and
multiplicative). We varied the total number of independent variables and the correlations of these

variables with the dependent values.

There were 60 different types of datasets: 3 (relationship types) x 2 (# of independent

variables) x 2 (# of weighted variables) x 5 (percentage of error). One hundred sample datasets were

generated for each combination of factors. Thus a total of 6,000 sample sets were generated. Each
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sample set consists of 100 data points, which are split in half and by 20% and 80% to create

estimation and holdout samples. When they are split by half, each estimation or holdout sample

consists of 50 data points. When they are split by 20% and 80%, each estimation or holdout sample

consists of 20 and 80 data points respectively. By applying two split methods to each sample set, we

made 12000 sample datasets for the simulation study. Table 2 summarizes the factors considered in

generating simulation data and split methods to create sample datasets.

Table 2: Summary Table of Factors Considered in Generating Simulation Data

(Y:='?3"'/-;“9 *X X tae)

Number of Number of Number of Cases in{ Percentage (a) of
Factors Relationship Independent Independent An Estimation Error Term (g)
Variables Variables Weighted Sample Added
* Linear
Y=L W X+a*e) ;g:
Varied * Square 15 variables 5 variables 20 cases 20%
Conditions (Y,=L".,W,* X’,+a *E) 30 variables 15 variables 50 cases 0%
* Multiplicative 50%

Using each estimation sample, we developed regression model by stepwise regression

analysis® In total, 12000 regression models were developed. We applied these linear regression

models (developed using estimation sample) to the holdout sample, and obtained forecasts. We

compared these forecasts against their known true values, and measured the squared differences

(squared prediction errors). We summed these squared prediction errors across the entire holdout

~ sample in each sample set. Each total prediction error was divided by the number of cases in the

holdout sample to compute the average prediction error (mean squared ecrror (MSE)) for each data

point of each sample set.

Using each estimation sample, the CBFS also generated forecasts on the target variable of the

corresponding holdout sample. These forecasts were compared with their true known values of

holdout sample to compute their prediction errors. Next, we computed the mean prediction error

(mean squared error (MSE)) for each target variable of each holdout sample in the same way as we

*The SAS’s default significance levels (i.c., p=0.15 for both entry and staying) are used for stecpwise regressions.
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did for the regression model. This MSE was compared with that of the regression model.

3.2 Comparison between Regression Models and the CBFS

In most comparisons, the CBFS outperforms regression models developed by stepwise
regression analyses. The average and variance of 120 MSEs of each regression model and the CBFS
are summarized in Table 3. The average MSE of the regression model is 0.269, which is far greater

than the CBFS by at least 0.074. This difference is very significant with F value of 453 in ANOVA.

We also investigated the separate effect of four control factors (relationship, number of
independent variables, number of variables weighted, and size of error terms) and the size of
estimation sample on each forecasting method. In order to examine the effect of relationship between
dependent variable and independent variables, we calculated the average MSEs of each forecasting
method for the relationship as shown in Table 3. The CBFS significantly outperforms the regression
model in all three relationships. All forecasts are found to be more accurate when the relationship is
simple and linear than when it is more complex (with non-linearity). Unlike regression models,
however, increasing complexity of relationship (such as going from linear to n(;nlinear, or from square
to multiplicative relationship) does not have a significant impact on the performance of the CBFS. In
short, the CBFS appears to be more robust than regression models against increasing complexity of

relationship between independent and dependent variables.

The number of independent variables has a significant effect on the performance of all
forecasting methods, as summarized in Table 3. This effect is particularly significant to the
performance of regression models. The average MSE of regression rapidly increases, while that of the
CBFS increases in a relatively small scale. The performance of the CBFS is significantly better than
that of regression model as independent variables increase from 15 to 30 (F value in ANOVA
increases from 36 to 502). Thus, the CBFS is more effective than regression models developed by

stepwise procedure when there are many independent variables.
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Table 3: Summary Table of Comparison between Regression and CBFS

Relationship

Number of Variables

Number of Weighted
Variables

Size of Estimation
Sample

Amount of Error

Summary

T oreiasing Mobos

Linear 0.260 0.184

Square 0.270 0.187
Multiplicative 0.277 0.188
Total Increase of MSE 0.017 0.004
F Values in ANOVA 3.92 1.40

I

15 independent variables 0.208 0.179
30 independent variables 0.330 0.194
Increase of MSE 0.122 0.015

F Values in ANOVA 650 49

5 weighted variables 0.261 0.177
15 weighted variables 0.277 0.195
Increase of MSE 0.016 0.018

F Values in ANOVA 10 76
50 cases in an estimation sample 0.186 0.169

20 cases in an estimation sample 0.351 0.203
Increase of MSE 0.165 0.034
F Values in ANOVA 1247 248

10% Error 0.058 0.062
20% Error 0.130 0.101
30% Error 0.233 0.163
40% Error 0.371 0.248
50% Error 0.552 0.356
Total Increase of MSE 0.494 0.294
F values in ANOVA 2270 13421

Average MSE

0.269

0.186

Variances of MSE

0.268

0.117
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Increasing the number of weighted variables among independent variables also has a negative
effect on the performance of forecasting, as show in Table 3. This effect, however, appears to be
slightly less significant to the regression model (F value of 10 in ANOVA) than to the CBFS (F values

of around 70 in ANOVAs).

The size of the estimation sample is critical to both the regression model and the CBFS, as
summarized in Table 3. The performance of the regression model declines so rapidly with the
decreasing number of the estimation sample that the average MSE of regression increases from 0.186
to 0.351 when the estimation sample size decreases from 50 to 20. The MSEs of the CBFS also show
an increase of 0.034 to the decrease of estimation sample, because it would be better to select similar
cases from a larger pool of dataset than from a small one. However, the sample size has a much
greater impact on the performance of the regression model (F value of 1247) than on that of the
CBFS. Therefore, when there are a few data points, it would be better to apply the CBFS rather than

regression models.

Finally, increasing amount of error added to the dependent variable also greatly influences the
forecasting accuracy, as shown in Table 3. The performance of the regression m;>del rapidly declines
with the increasing amount of error term. When less than 10% of error is involved, the regression
model performs even better than the CBFS. However, the average performance of the regression
model becomes inferior to that of the CBFS when more than 20% of error term is added to the
dependent variable. Thus, the performance difference between regression models and the CBFS

becomes more significant in forecasting with an increasing amount of error.
In summary, this simulation study shows that CBFSs are effective in forecasting, and they

therefore can be directly applied to many business forecasting problems characterized in terms of many

independent variables, a few data points, presence of error, and complex relationship among variables.
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4. Conclusion and Future Research

Analogous cases have been used for prediction and forecasting in many business areas. In this
paper, we develop a case-based forecasting system (CBFS) which identifies similar cases and applies
their outcomes to forecasting. The system selects key attributes of a forecasting problem case,
identifies similar cases from the database with respect to these attributes, and generates a forecast

based on these cases identified.

We demonstrated the effectiveness of the CBFS in terms of its accuracy in predicting the
outcome of the current problem based on the similar cases identified. We compared the forecasting
accuracy of the CBFS with that of regression models developed by stepwise procedure under varied
simulated problem conditions, and found that the CBFS outperforms regression models in most
comparisons. The CBFS is quite robust against increasing amount of error, decreasing number of data
points, increasing number of variables, and increasing complexity of relationship between independent
and dependent variables. Thus, they can be directly applied to many business forecasting problems
especially: (1) when there are many independent variables; (2) when there are only a few data points
in the dataset; (3) when amount of error is expected in the dataset; (4) and when there are no

appropriate forecasting tools available due to the complex relationship among variables.

The diversity of models and methods for the implementation of each subprocess of the system
induces subsequent future research. The present CBFS employed specific models for relating
similarity to distance and for determining how many cases to-combine. A direct extension of this
paper is an investigation into appropriate models for an effective CBFS. If they vary depending on the
characteristics of forecasting problems, one should further explore which models are the most

appropriate in which problem conditions.

There is much useful information indicating effectiveness of an CBFS in identifying similar

cases and forecasting based on them. For example, the correlation between the target variable and the
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composite of selected attributes indicates how effective the selected variables are in explaining the
target variable, and the similarity distribution also informs us whether there are useful analogous cases
or not. If the correlation between the target variable and the composite of selected attributes is small,
or if there are no cases with a high similarity, it would be better not to completely rely on the
system’s retrieving and forecasting. Future research should also focus on the development of an CBFS
which can extract and incorporate useful information from the knowledge base, can diagnose the
effectiveness of the system’s retrieving and forecasting processes, and can improve the process by

incorporating this information into these processes.

Future research is required for applying the system to real business forecasting problems
where no specific forecasting models and tools are effective, such as new product forecasting (cf. Lee,
Wind, and Burke 1992a), advertising forecasting, forecasting sales and market shares, etc. It would
also be interesting to investigate how the CBFS is effective when it is applied to the forecasting
problems where many traditional forecasting models and tools are available, such as advertising-sales

effect forecasting, time series forecasting, etc.
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