Dcfinition 2.3
The second difference of the function f is denoted by A’f(n) and‘is defined as the

difference of the first difference, that is,
A f(n) = Af(n+1) - Af(n).

Remark. f is discrete convex if A2f(n)20 (For additional definitions of discrete and
continuous kinds of convexity sce Ponstein [15] and Kumin [10], [11]).

Theorem 2.1

The product of two positive (strictly) decreasing and discrete convex functions is also
a decreasing and discrete convex ﬁmcn‘oﬁ,

Proof. Assumec that F(c)and G(c) arc positive (strictly) decreasing, discrete convex

functions. Let  H(c) = F(c)G(c).

AH(c) = F(c+1)G(c +1) = F(c)G(c)

= F(c+1)AG(c)+ G(c)AF(c) < 0.
Hence, H(c) is striclly decreasing.
Secondly, we show A’H(c)> 0.
AH(c) = F(c+2)AG(c+1) ~ F(c +1)AG(c)
+G(c+1)AF(c+1)- G(c)AF(c)
= F(c+2)A’G(c)+AG(c)AF(c+1)

+G(c +1)A'F(c)+ AF(c)AG(c) >0,

since F(c) and G(c) are discrete convex functions in ¢.

-121-



Therefore the product of two (strictly) decreasing and discrete convex functions is also

a decreasing and discrete convex function,

3. A Discrete Convexity Result for the Erlang delay formula.

Theorem 3.1

The Erlang delay formula (or Erlang "B" formula) is a decreasing and discrete convex

SJunctionin ¢>1.

Proof. See Choi [1] and Jagers and Van Doorn [9].
4. The Discrete Convexity of Some Performance Measures of an M/M/c

Queueing System

Theorem 4.1

In the M/M/c queue, the average number of customers in the queue is a decreasing and

discrete convex function of c.

Proof. The average number of customers in the queue is:

where B is the Erlang delay formula.
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We have already shown by Theorem 2.1 that B is decreasing and discrete convex in c.

Let

Fe)=—£—
c=p

and G(c) be the Eriang delay formula. Since AF(c)<0, F(c) is a decreasing function.

c+2-p c+l=-p c+l-p c-p

A1F(C)= p - p p + p

_Pl(e+2-p)c—p)—(c=p)+(c+2~p)c+1-p)]
(c+2-p)c+1=p)c—p)

2 p
(c+2-p)c+1-p)c-p)

>0.
Hence F(c) is decreasing and discrete convex.

Since L, is the product of two decreasing and discrete convex functions in ¢, L is

also decreasing and discrete convex in c.

Theorem 4.2

In the M/M/c queue, the average waiting time of a customer is a decreasing and
discrete convex function of c.



Proof. The avcrage waiting time of a customer can be cxpressed using Little's

formula by:
L
W, = -/;Li
S S
f1c-p)
Let

F(c) =L and G(c)=B
. c—p
Since B is the Erlang delay formula, G(c) is a decreasing and discrete convex function. It is
clear that AF{(c) <0, thus F(c) is decreasing.

11 1 +l
c+2-p c+l=-p c+l-p c-p

AF(c) =

_~lc=p)=(c+2-p)c=p)+(c+2~p)(c+1-p)
(c+2-p)c+1-p)c-p)

2
T (c+2-p)c+1-p)c-p)

>0.

Thus, F(c) is a discrete convex function in c.

Since p is positive and W, is the product of two decreasing and discrete convex
functions, W_is also decreasing and discrete convexin ¢ .
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