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ABSTRACT

The first objective of this study is to derive an
automated method that minimizes the number of
spline regions and optimizes the ocations of the
knots to provide and adequate fit of a given
nonlinear function. This has been accomplished
by the development of the Optimal Spline Method
discussed herein. The second objective is to
apply the derived automated method to an
important application. This objective has been
accomplished by the successful application of
the Optimal Spline Method to ship classification .

1. INTRODUCTION

A nonlinear function can be chopped into subarcs
having small nonlinearities - which can be
represented by simple spline functions. The

domain of a subarc is called a spline region and a

point joining one spline region with an adjacent
one is called a knot. The piecewise combination
of the simple spline functions that fit the subarcs
is a spline representation of the nonlinear
function. Spline representations can closely
approximate the nonlinearities of any function.
The goodness of fit depends on the number of
spline regions and on the location of the knots.

A major technological area in ocean surveillance
is the over-the-horizon detection and classification
of surface ships. The high range resolution radar
system i1s a candidate obtamning surface ship
signatures (stermn-bow profiles) having
classification potential. Accordingly, identifying a
ship signature is largely a software problem.

The integrated signal returns of a high range
resolution radar system provide data from which
the radar cross-section per range cell of a ship can
be estimated. Radar cross-section is a measure of
the amount of a ship's superstructure contained in
a range cell. As a result, a graph of the radar
cross-sections per range cell drawn over a ship's
length(i.e., a stern-bow profile) provides a means
for classifying ships. The stern-bow profiles are
the signatures for ship classification. The separate
superstructure appears as valleys. An automated
technique is needed for determining the number of
separate superstructure masses, their separation
from each other, their locations and their extended
widths. These are the independent features of a
ship's stern-bow radar cross-section profile. The
Optimal Spline Method is an automated technique
that fulfills this need.

The problem of identifying a pattern increases
exponentially with the number of features. Each
set of data contains a fixed number of independent
features. If toc many spline regions are used the
independent feature are distributed into a higher
number of spline coefficients. In this case the set
of spline coefficients form a dependent set of
features, making the classification problem
unnecessarily complex. An independent set of
features can be accomplished by optimizing on
the locations of the spline regions for each fixed
number of knots and by minimizing the number of
knots. This is precisely what the Optimal Spline
Method accomplishes.
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2. QUADRATIC SPLINE FUNCTIONS

Consider the following general 2nd order nonlinear
differential equation

(t) = f{t,r(t),rxt)) 2.1

where r and f are scalars and where f is a
continuously differentiable function. Integrating
both sides of this equation twice with respect to
time over the interval [T,,t] gives

1(t) = x(Ty) + r(To)(t-To)

t 1
+ f f f(s,1(s), 0 (s) ) ds dt (2.2)
T, T,

The double integral can be rewritten as

t ot
[ / 8(s,t) f (s,1(s), 1 (s) Y ds dt 2.3)
T, T,

where
8(s,t)= 1 s<1 2.4

= 0 s>1

Interchanging the order of integration and carrying
out the integration, 1(t) can be rewritten as

1(t) = r(To) + r(To)(t-T,)
t
+f @s) f(sis), 0 (s))ds  (2.5)

[

where 1, =1(T,) and v, = r1(T,)

This equation is the integral equivalent of the
differential equation. The integral term is evaluated
as follows: The total time domain of interest [T,,
T;] is divided into a number of subregions [T, T},
7=1,2, -, m+1 called "splines”. The points T, T,
—-T,., are called knots. Here, T ,,= T,;. The
integral can be written equivalently as a sum of
integrals over each spline region, i.e.,

()= 1, + r(t-Ty)

i1
+ 3 [ (1-5) £ (s,1(s), 1) (5) ) ds
k=1

t
+ / (t-s) £ (s.1(s), 0 (s) ) ds (2.6)

i

where t € [T,,, T; 1, j=1,2,-—, m+1. By choosing
sufficiently many splines we can model
f(s, 1(s), T (s)) as a constant 1@ over each spline
region [T, T, }, =12 -, m+l. With this
approximation r(t) becomes

1) = 1, + rO(t-T,)

31
+ I(T T) 4T Tu) 1,
k=1
+ Ut T2 1 @n

where te [T}, T; ], j=1,2,-—-, m+1. This is the
quadratic spline function. In vector form the
quadratic spline function can be written as

1(t) = a"(t;T)p 2.8)
where the knot vector T is given by

I= ( TO, Tl) TS Tm )’
= (Iml’ “2)2, - lﬂ)m, ro’ M)

aT(t;T) = (a,(t,T), a,(t;T), -—a,,.,(t;I))
At =1
a,,(tD)=t-T, 29

and where, for j=1,2, --- m+1, |
0 T<t<Ty,
Yalt- T, 2 T, <t< T

(T-To) AT T,)  T<t (2.10)

In an application to ship classification the
function r represents the radar cross-section per
unit range resolution (i.e., density) along the length
of the ship from the stern and at the end of the bow
the constraints

=0, T,)=0 2.11)
must necessarily be invoked. The coefficients r;
=1, 2, -, m+] provide a composite picture of the

s}up s superstructure.

Let d(t) be a measured time history of r(t):
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dity=r1(t) + n (2.12)

where 11 is a stationary Gaussian process with
variance o2 A general time function
optimization problem has the error criterion

T
f
EpD=/ Mo-wEDpd  @13)
T,
and where the (m+1) dimensional vector T denote
the set of parameters on which the vector a'(t;T)
depend. In the case of quadratic splines the vector
T represents the set of knots.

Since the argument p occurs linearly inside the
square brackets the error criterion E(p,T) can be
minimized with respect to p as a function of T.
Minimizing E(p,T) with respect to q gives in
matrix form

B(e,I) gNI) = ¥(D) (2.14)

where gN(T) denotes the optimum g, the column
vector ¥(T) has components |

T¢
wT) = J d(t)ya(tDdt, j=1, 2, - N (2.15)

To

and the matrix B(p,T) has elements

Tt
b(D={ aEDya®Dd, i,j=1,2,—N
T, (2.16)

Using the definition of y(T) we can rewrite the
matrix E(p,T) as

Tg
E(NTYD =} &@1)- Ty D) Q.17
Tl)

Since the first term is independent of T it will have
no bearing on the generation of the optimum T"
Consequently, we redefine the error criterion E as

E(M) = (D) BYD) -« (2.18)

which is the last term of (2.17). Our objective is
to maximize with respect to the knot vector T in
the presence of the constraints

T,< 1,51, 2, —, m+1 (2.19)

where T,,, = T,.

The problem is to maximize E(T) of (2.18) with
respect to the knot vector T. Several gradient
methods are available for carrying out the
optimization: steepest descent, Newton-Raphson,
Newton, Gauss-Newton, Fetcher-Powell and
Davidon. Newton's method is appealing because
of its quadratic convergence properties. It can be
umplemented since the Hessian matrix is
analytically computable. If E(T) has a maximum

at T=T> then TP can be approximated from a
previous estimate T2 by

TP = T2. [ 82E(T2)Y8T2]"! SE(T2)/8T
(2.20)

3. RESULTS OF AN APPLICATION OF THE
OPTIMAL SPLINE METHOD TO SHIP
CLASSIFICATION

The simulated stem-bow profiles are generated by
the Image Reconstruction From Projections(IRFP)
Method which reconstructs stem-bow images
using high range resolution radar data. The
horizontal axis of each plot denotes the number of
range cells (50 feet per range cell) measured from
the stern to the bow along the projection. The
vertical axis denotes the radar cross-section of the
ship’s portion contained in the range cell. The left
end of the profile represents the stern and the right
end the bow. The IRFP profile has been
normalized to a total cross-section.

The results of the application of the Optimal
Spline Method to the IRFP stern-bow profiles of
Figure 1 and 2 are contained in Figures 3 and 4,
respectively. In this application the radar cross-
section is normalized to unity. The coefficient of
the optimal spline function for each spline region
is symbolized by the notation "PBAR". Optimally
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placed knots are denoted by the notation
"OPTIMAL". For example, in Figure 3 the value
of r, | (i.e., the first component of the p vector
Equation (2.8)) for the first spline region [0, 0.72]
15 equal to 0.19; the first knot is optimally located
at 0.72. The second knot is optimally placed at
2.75. Since each range cell represents 50 feet
along the ship's length and since the stem starts at
zero it follows that the first knot falls at 0.72 x 50
feet = 36 feet from the stern, the second at 138
feet, etc.

The number of knots, an output of the Optimal
Spline Method, is five for the ship #1 - Figure 3.
Note that eight knots were calculated for the ship
#2 - Figure 3. The knot location and the optimal
spline coefficient values are tabulated in Tables
3-1.

Analyzing the two columns of Table 3-1 and the
columns of Table 3-2 we see that it is easy to
distinguish between the ship #1 and the ship #2
because (1) there are five knots for the ship #1
and seven for the ship #2, (2) their knot locations
differ considerably and (3) their optimal spline

coefficients differ greatly in magnitude for some
of the spline regions.

Optimally locating the knots has two advantages.”

The first is the extraction of the independent
features for classification purposes. the second is
the reduction of the least-squares error. In table
3-3 is presented a comparison of the least-squares
error between optimally located knots and equally
spaced knots. The least-squares error of the ship
#1 for optimally located knots is .01 and the error
of the same ship for equally spaced knots is
0.87. The ratio of the error associated with
equally spaced knots to the error associated with
optimally located knots is 87. In all cases this
ratio is greater than 10.

Table 3-1. Comparison of Optimal Spline Knot Locations

4. CONCLUSIONS

An automated technique called the Optimal Spline
Method has been developed for application to
problems having high nonlinearities. The Optimal
Spline Method in ship classification applications
determines the number of separate superstructure
masses, their separation from each other, their
locations and their extended widths. These
independent features correspond directly to
optimal spline coefficients of the method. The
results contained in Section 3 show that ships of
different type exhibit large differences in their
optimal spline coefficients.
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Tabte 3-2 Optimal Coefficient Values

Spline Region
Index Ship #1 Ship #2

#1 -0.19 -1.29
#2 0.25 - 013
#3 -0.81 -0.33
#4 1.85 1.83
#5 -1.73 -1.99
#6 0.32 047
#7 . -0.19
#3 . 0.07
#9 - -

Table 3-3 Comparison of Least-Squares

Between Optimally Located Knots and
Equally Spaced Knots

Knots

Index Ship #1 Ship #2 Number Least-Squares Efror
#1 0.72 0.81 of Optimally Equally
#2 275 3.79 Knots Located Spaced
#3 4.03 5.03 Knots Knots
#4 4.98 5.97
#5 6.13 714 Ship #1 5 0.0t 0.87
46 M 9.66
#7 . 11.7¢9
#8 o * Ship #2 7 0.06 1.45
#9 - * g
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Fig 1. Simulated IRFP Data

Ship #1 Stern-Bow Profile [Sq. M.]

Fig. 2 Simuated IRFP Data
Ship #2 Stem-Bow Profile [Sq. M ]
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Figure 4.  Optimal Spline Method Results of Ship #2
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Figure 3.  Optimal Spline Method Results of Ship #1
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