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Abstract

This paper presents an eflicient solution for a class of forbid-
den state problems by introducing a cyclic timed controlled
marked graphs (TCMG’s), a special class of timed controlled
Petri nets (TCPN'’s) as a model of a class of discrete event
systems (DES’s). The state feedback control is synthesized,
which is maximally permissive while guaranteeing the forbid-
den states will be avoided. The practical applications of the
theoretical results for an automated guided vehicle (AGV)
coordination problem in a flexible manufacturing facility is

illustrated.

1. INTRODUCTION

Recently the synthesis of controllers for achieving desired
closed-loop belavior has been one of the considerable inter-
esting researches on discrete event systems (DES’s) [1]-[4].
Among the specifications of the desired behavior {or the con-
trolled DES’s, it is the most essential to guarantee that the
forbidden conditions (states) will be avoided in the systemn,
which is referred to as the forbidden state problem (specifi-
cation).

The forbidden state problem for a DES was introduced by
Ramadge and Wonham who proposed a state fecdback solu-
tion in {2]. Krogh considered the forbidden state problem in
the context of controlled Petri nets (CPN’s) [5]. Concurren-
t transitions in CP’N’s model a more general class of DES’s
for which the uniqueness of the maximally permissive control
found by Ramadge and Wonham no longer holds [3]. CMG
model which was introduced by Krogh and Ilolloway permits
us to synthesize an eflicient feedback control policy from the
Petri net model of the uncontrolled system dynamics [3],[)
while other Petri net analysis methods could have been ap-
plied to verily properties of controlled systems {G},}7]. This,
however, modeled only a logical point of view of the controlied

system, and gave no attention to any time constraints. The

control policy in [3],[4] was somewhat restrcitive in most for-
bidden state problems. Moreover on some cascs, it might. be
possible to avoid forbidden states Ly not. allowing the con-
trolled systemn to operate at all, but this would seldom be an
acceptable control policy.

Lately, there have been some papers to extend the re-
sults on feedback control policies for untimed (logical) Petri
net models to control problems in TPN’s [8],{9]. These pa-
pers proposed an attractive lramework for control probleins
in which real time specifications are incorporated into the
models and control objectives, and introduced an eflicient
feedback control policy. In these models, however, there are
two types of transitions; uncontrolled transitions which have
bounds of the firing interval are one and controlled transi-
tions which are lorced to fire by the controller are the other,
which makes those unrcalistic to some extent, and have somne-
what restrictive initial states which should meet not only the
marking state but also the clock state.

In this paper, we propose a cyclic timed controlled marked
graphs (TCMG’s) as a model of a class of DES’s, which are a
special case of the TCPN’s that are an extension of CPN’s in
which time delays attached to the places, and {ormulate and
solve the forbidden state problem for the DES’s which can
be modeled as TCMG’s. Thne delays attached to the places
make the firing rule ol transitions simple, and the feedback
control policy concerning all the clock states in that marking
makes the initial siate less restrictive. Due to the distributed
representation of the system state in termns of the net mark-
ing and the time delays attached to the places, TCMG’s pro-
vide a compact, intuitive modeling framework for describing
both the state transition dynawmics of the DES with time con-
straints and the forbidden state specifications.

The following section defines TCMG's and introduces no-
tation and results which are used in the remainder of the
paper. The specification of forbidden stale conditions using
the distributed state representation and the set of time delays

attached to the places of TCMG's is discussed in Section IT1.
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'qu Section 1V, the adaptive controls, which guarantee that
‘the next state transition will not lead uncontrollably to a
forbidden marking, are considered and the maximally per-
missive state feedback problem is solved. The application of
our resulis to an automated guided vehicle (AGV) coordina-
tion problem in a flexible manufacturing system is illustrated

in section V.

II.  Tmiep CONTROLLED MARKED GRAPIS

Timed controlled Petri nets (TCPN's) are an cxtension of
controlled Petri nets (CPN’s) [3]-[5] in which time constraints
can be attached to the state places, and are defined as a
6-tuple G = {P,7T,£,C,B,d}. Here P is the finite sct of
state places, T is the finite set of transitions, £ = (P x
T)U(T x P) is a set of direcled arcs associating state places
and transitions,‘C is the finite set of control places, B =
(C x T) is a set of directed arcs associating control places
with transitions, and d : P — {[a,d C R* U {0}} assigns a
closed availing time interval (defined below) to each state
place p € P where R* is the set of positive rcal numbers.
The lower and upper bounds of the availing time interval
d(p) for state place p € P, will be denoted by di,(p) and
duax(P), that is, d(p) = [dwin(P), dmax(p)]. For all p € P,
0 < duin(p) < diyax(p) < 00. A TCPN with dyin(p) = 0 and
dpax{p) = oo for all p € P reduces to a CPN. We assume

that there is at most one arc in B and £ Letween two nodes.

Readers are considered to be familiar to CPN notations, and
notations to be used in this paper will be shortly explained
(Refer to {3],[1]).

The state of a TCPN is given by its current marking
m: P — N, where N is the set of nonnegative integers. The
marking indicates the current distribution of tokens in the
state places. In a TCI’N, when a token is pul in a state
place p € P it remains unavailable for an amount of time
d{p), which we call availing time delay for the state place p,
such that dyin(p) < d(p) < dyax(p), after which it becomies
and keeps available as long as the token exists in the place.
This indicates that state places represent conditions which
are true for an amount of time, and that for a state place
p, the amount of time which it takes for the condition to be
true is between din(p) and dia(p) when the system normally
operates. n this paper, the given system is assuined (o be

in normal operation. A transition t € 7 is said to be gtate-

enabled under a marking m if for all p e Py, m(p) > 1 and
the token in the place p is available. A control u: C —
{0,1} assigns a binary token count to each coulrol place.
A transition t € T is said to be control-enabled under a
control u if u(c) = 1 for all ¢ € (¢, with the convention
that any transition t ¢ 7. is always control-cnabled. A set of

transitions T C 7 in a TCPN G is just said to be enabled
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for a given marking m and control u if all transitions t €
T are both state-enabled and control-enabled. The set of
enabled transitions 7 fires, and state transitions occur (i.e.,
the TCPN marking changes). The time when a transition
t € 7 fires, which is called the firing time of the transition ¢t
and denoted by 7(t), is determined by the latter between the
time when the transition tis state-enabled and the time when
the transition ¢ is control-enabled. Note that the control u
does not influence a trnasition to be state-enabled. When the
enabled transition set T fires nnder the given marking m and
control u, the state of the TCPN changes from marking m to
a new marking n? defined by the state transition equation
n(p) = m(p) — 199N T| + [Dpn T}, where | - | indicates
the cardinality of the set argument. The control u can be
updated or not in response to state changes in the system.
In this section, we regard the control u as one fixed in any
number of state transitions.

Rinvr(u,m) and Ronyp(u, m) denote the set of mark-
ings reachable under valid transition firing sequences of any
length and the immediately reachable marking set under the
firing of a single transition set, respectively, under the control
uin a TCMG.

We now restrict our attention to a cyclic TCMG mod-
el that for any place p € P, |p{? = 1 and [9p] = 1, and
that every place p € P is contained in a cycle [3],[6]. Fig-
ure 1 illustrates a cyclic TCMG where circles represent state
places, squares represent control places, bars represent tran-
sitions, and pfa, Y] represent time constraints attached to s-

tate places such that a and b denote the minimum and the

maximum availing time delay, respectively. We note that in
TCMG’s, there is no conflict among transitions since each
place is the input to only one transition. Thus, any set of
transitions which are both state- and control-cnabled is en-
abled. Moreover, it. can be shown that the cyclic structure of
TCMG’s guarantecs the net is live under control tgne, pro-
vided the initial marking is chosen from the initial marking
set, M such that every cycle in the given TCMG contains at
least one marked place, and that every place p € P is con-
tained within some cycle which has exactly one marked place
13),[4]. Figure 1 shows an example of the initial marking for
the given TCMG.

From now on, we restrict our attention to TCMQ’s with
initial markings in M, which have properties such that if
mp € M, then myg is binary, the net is live under the control
Yone, and Ry r(tgne. 10) © M {3],[6).

We use the notation P* to indicate the set of all finite
scguences of clements of P, including the empty string e. In
a TCMG, a sequence of places 7 = -+« py € P* such that
’)E'i)l
we let 7. N) = pyjur - pn 0 < 7 < N and (0, N) = ¢

denote the sequence ol places consisting of the last j places

=y, for 0 < 7 < N is said to be a path. For a path 7,

of the path, which is said to be a suffiz of the path. The set
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Figure 1: A cyclic timed controlled marked graph

of all suffixes of a path = is denoted by sf ().

In a TCMQ, the firing time of the transition ¢, denoted
by 7(t), is recursively represented in terms of the availing
time delays, d(p), for the inputs p to the transition ¢ and
the firing times of the transitions ¢ for which the place pis
output, that is, 7(t) = max,cm (d(p) + 7(£)) il u(c) =1 for
all ¢ € (¢, and 7(£) = oo if u(c) = 0 for some c € (I, since
the transition t can not be control-enabled. The forbidden
state problem in a TCMG is related Lo the time when a token
is put in and released from the individual state places in the
forbidden marking set. The former is the firing time of the
transition for which the state place is output and the latter
is the firing time of the transition for which the state place is
input. These firing times are computed along the particular
paths, called precedence paths, which end to the interesting
state places in a TCMG. We define a precedence path for a

place p € P as follows.

Definition 1 @ For a place p€ P in a TCMCG, a prece-
dence path is defined as a path m, = pypi -+ pn such that
(M) rn=n,
(@) pi#p. 0<i#7<n,
(3) p, #£ p](t), 0<i<j<mn and
(4) Oy = pEL), 0<i<n

In Figure 1, a path pspypampaps is the precedence path
for ps, and the precedence paths lor pg are paths pypiopn s,
puapspimips, and mpapapspopiprps. For a place p € P, we
denote the set of all precedence paths, the set of all controlled
transitions for which a place in a m, € /T, is an output, and
the set of all suffixes of all precedence paths Ly /1, T,
and sf(/1,), respectively. Note that every precedence path
for a place p € P includes a cycle and contains at least one
marked place for all initial markings in M, and that given an
intial marking m € M and control tgne, the place p will be
continually marked at irregular intervals which have bounds
as stated in the following lemma. The interval time is called
the remarking time for the place p and denoted by 7r(p).

To get the remarking tine, we define particular places to

be input to the transition for which the place p is input as

follows.

Definition 2 : For a place p€ P in a TCMG, an asso-
(0

ciate place p, is defined as a state place such thal PO = py

For a place p, we let I:’l, denote the place set which consists
of the place pand all associate places for the place p, and ’I}/P"
denote the set of all controlled transitions for which a place
in some m,, [or some p, € f:’,, is an output. The sct of all
cycles such that exist within a precedence path for a place
p and that include the place pis denoted by Cy,, and the

clement cycle of the set is denoted by Cn,.~

Lemma 1 : Given a place pin a TCMG and an initial
marking ng € M. f u{c) =1 forall c € ()¢ for cach t € T,
P
then
max (3 dun@) SRS Y dune(p)s

Cy€C)
[l peCy, Pmélynt,
»

where Pn,."_ = {pm € Plpm € 7, and 5, c ”I",,)'

We will fet 7., (») = Maxe,, ecp (Cpec,,, dwin(pid), and
»
TR (D) = Epmel’nl‘ duax (Pm)-
L
Our solution for the forbidden state problem is based on

the structure of the TCMG, particularly among the sulfixes

of the precedence paths for the individual state places in the

forbidden state, the paths which influence the state place
markings. These are the paths beginning with state places
which are marked or outputs of controlled transitions. We
call these paths marking paths or control paths, which are
defined as follows.

I)cﬁnitionr g o Toraplace p€ Pina TCMG, a control
path wp_c € sf(I1,) is defined as a suflix of some precedence
paths m, € /T, such that

OFIES)
(2) O ¢ 13,0 < i < 0 when n> 0), and
@) me T.

Definition 4 : For a place p € P and the given marking
min a TCMG, a marking path m,(m) € sf(I1,) is defined
as a sullix of some precedence paths m, € JT, such that

(1) pu = p,
(2) () = 0,0 < i < o when n> 0), and
(3) m(m) 2 1.

In Figure 1, the paths prpg and pypropim are the mark-
ing paths for mpy, and the control paths for gy are propim
and pyprpw. The sct of all control paths for a place p € P is
denoted by 1, ., and the st of all marking paths for a place
p € P and the given marking mis denoted by [7,(mr). Given
a place p € P and a marking m in a TOMG, for a marking
(respectively, control) path, the transition_ for which the first

place in m(m)(respectively, mp ) is an output is denoted by
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ta,om{respectively, ty ), and the set of all controlled transi-
tions for which a place in some w,(im) € IT{m),not the first
place, is an output is denoted by T ¢ny, and the set of all
suflixes of all marking paths excluding marking path itsell
and € is denoted by sf*([1,(m)).

For a place p € P in a TCMG, the firing of the transition
D p under the given marking m € M and control u can exist
within the duration, 7,(wu m), which is represented in terms
of availing time delays for the places in the marking paths
for the place p as stated in the following lemma. We call the
duration possible firing time of the transition (0p under the
given marking m € M and control w. [n order to simply

denote the duration, we let

nin(H1,(m)) = ma
doin (113(m)) n,(m>ez’z‘,(...)(z

n-1

dmin(p'))

i=1
and

(i donex(2).

Lemina 2 : Given a place pin a TCMG and a marking
m e M for which m(p) = 0.
(1) If u(c) =1 for all c € V¢ for every t € Tir, then
»

dmax(ITp(m)) = max

np(m)etl(m)

Anain (HTp(1)) + k - TR0 (D)

IA

wu,m), k=012
< dmnx(”p("")) +k- TRenax. (]’)-
(2) If u(e) = 1 for all c € D for every t € T, t= i
and every t€ Iy () where p, € ISP and u(c) = 0 for some
ce ¢ for some te T, then

duin(Hp(m)) + k- () < 7(u,m), k=01

< d|1|nx(]]p(7”‘)) + k- Tl!‘.“u(’,)‘

(B) If u(c) = 1 for all ¢ € (V¢ for each t € Tir,(my and

u(c) = 0 for some ¢ € (¢ for some t € 7}1,‘ then
?

rhain (IT(1)) < (0, 1) € dypax (IT(110)).

(1) 11 u(e) = 0 for some ¢ € (¢ for some 1 € Ty then

7p(u, ) = 00,

The above lemna shows that the possible firing time of
the transition for which the given place is an ontput under
the given marking m and control win a TCMG can be com-
puted in terms of the availing time delays of the individual
places. From the above lemma, we can gel the time, denoted
by 7,(u, m), which a token can exist in the place p € P as
stated in the ollowing corollary. The time is called possible

marking time of the place p.

Corollary | : Given a place pin a TCMG and a4 mark-
ing m € M for which m{p) = 0.
(M ufe)=1Tforall ce O for every te 7;”'1« then

Quin (T (1)) + k- 7, (p) € Tp(oom) < max (s (1, (1)) +
P

pel,

Qoax(pr)) + k- T (P k=10,1,2,-- -

2)Ifu(c) =1forall ce (¢ for every t € Th,, t= 79,
and every t € Tpy, (m) Where p, € f’p and u(c) = 0 for some

c€ ¢ for some t e T, then
(4
din{ITp{m)) < T, m) < max(dmax(I15,(12)) + dpax(pr))
prEl,

and
din{(TTo(m)) + TR () < Tp(u, m).

3) 1f u(c) = 1 for all e € Vit for every L € 'I;;r (m) and
»
t=p and w(c) = 0 for some ¢ € (V1 for some L € T, then
P

din (ITp(m)) < Tplae, m) < max(dpax (17, (M) + diax(p)))-
peD,

(4) If w(c) = 1 for all ¢ € Vi for cach t € Ti,(my and
u(c) = 0 for some ¢ € (V¢ for cither ¢t = p{? or some t €
TII,, (m) then

»

Auin(1p(m)) < Tp(w, m).

(5) If u(c) = 0 for somne ¢ € (¢ for some t € Ti1(m) then

T, m) = oo.

This corollary indicates that the possible marking time for
the given place p can be computed under the given marking
m and the control u in a TCMG. For a marking m such
that m(p) = 1, the possiblc marking time for the place pis
extended as 0 < Tp(u,m) < max(7,,  (u.m)). For a given
place p, a marking m, and a control wu, if 7(u, m) < oo, then
the place pis said to be markable from m under the control
u, otherwise the place p is said to be unmarkable from m.

Control paths permit us to identify which controls can
regulate the marking of places in a 'TCMGQG as stated in the

following lemma.

Lemma & : Given a place p in a TCMG and an ini-
tial marking mg € M for which my(p) = 0. If m, €

sf(11,(myg)) for some 7, . € 1, , and u(c) = 0 for some

el ta,_ then m(p) = 0 Tor all m € Rynp(u, ).

From the above lemma, it follows that, the marking of the
given place may be regulated by external controls which are
inputs of the control path for the place in the sense that if the
path is empty, a control exists which will prevent the place

from ever being marked.

I FORBIDDEN STATES

The forbidden state problem for DES’s involves the con-
trol syntheses which guarantee the system never enters a
specified sct of forbidden states. In a TCMG a set of for-
bidden states is expressed by a set of markings M C M.
Following [3],[4], the specification of a set. of forbidden mark-
ings in a TCMG is given a class of set conditions, so called

class condition, F C 2P, which deflines a set ol forbidden
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markings, Mg = {me M|3F € F.Vpe F m(p) =1}. For
a particular set /' € F, Mp denotes the sct of markings with
tokens in all state places in ' € P, and for a state place
p € P, M, denotes the set of markings with a token in state
place p.

In general, given a set. M x) of forbidden markings, a larg-
er set of markings must be avoided, due to the possibility
of uncontrollable firing scquences, which is said to be the
weakly forbidden markings, W(Myr), with respect to My
defined as W(Mx) = {m € M|Rinp(Uzcroom) N Mx # 0}
[6]. In words, W(My) is the set of markings from which a
marking in the [orbidden marking set Ay can be reached
uncontrollably, that is, the set of markings such that 3F ¢
FNper To{Uzero, m) # 0. By delinition, Mz € W(A£). Giv-
en aset My C M for a TCMG of forbidden markings, the
set My = M — W(Myx) is said to be the set of admissible
markings with fespect to Mg, and Mg N W(My) = 0.

A control objective is to prevent any forbidden markings
My from being reached. To carry out the control objective,
we will use the control policy to prevent :in_v forbidden mark-
ings Mr from being reached while the control u is updated
upon each state transition using state feedback, which will be
referred to as adaptive control which can be used to achieve

the maximally permissive closed-loop behavior [3],(5].

IV. ADpAPTIVE CONTROL

If the system state can be measured and the control can be
updated immediately when state transitions occur, it is only
necessary to assure that the set of next possible markings are
admissible. Such a state feedback policy is the motivation for
the adaptive control problem considered in this section.

Given a set of forbidden markings My, and an admissi-
ble markjng m € My, the objective of adaptive control is to
choose a control u such that any marking reachable from m
in one state transntion is also within Mz while permitting
a maximal number of state transitions from the marking m.
It is shown in [6] that for the maximally permissive adap-
tive control problem, it is necessary to solve the problem
only when the marking is on the boundary of the admissible
marking set Mx, where the notion of boundary markings is

defined as follows.

Definition 5 : [3] Given a marking set Af for a TCMG,
a marking m € M is a boundary marking in A if there

exists some m’ € Rong(Uone, M), such that m/ g A,

For a set of markings Af, the set of boundary markings
is denoted by 6M. It is also shown in [3] that for admissi-
ble markings which are not boundary markings, the unique
maximally permissive control is the most permissive control,

Uone. In this section, we consider the identification of bound-

ary markings for sets of adinissible markings, and character-
ization of the set of maximally permissive controls for these
markings.

We now consider the adaptive control problemn for a class

condition satisfied the cycle condition defined as follows.

Definition 6 : A class condition F for a 'TCMG is said
to satisly the cyecle condition (cc) if, for every I € F,
no place p € I lies within any cycle including another place

pFery#p

A class condition satislying the above cycle condition will be
referred to as ce class condition. The following theorem
identifies the set of maximally permissive controls for a given
cc class condition. Without loss in generality, we assume that
dpe F, I, . # cforevery F € F.

Theorem 1 : Given a TCMG with a cc class condition
F and an admissible marking m € My, a control u is max-
imally permissive with respective to the forbidden markings
My for a marking m if and only if the following hold.

(1) For each I € F such that m(p) =1 for all p€ Pt for
each t € Ty # 0 and N, ep Tl tzeror m'pnr(m)) # 0, there
exists c € V¢ for one t € Ti1,(my such that u(c) = 0.

(2) For each ¢ € C such that u(c) = 0, there exist-
san F € F for which m(p) = 1 for all p € ®¢ for each
t € Tneim # @ and Nper Tl Yzeror 771.7-”'_(,")) # 0, such that
cetforone te Titpmy and W) = 1 for all ¢ # c € ()¢
for each t€ Tj (my-

V. EXAMPLE

In this section we apply the theory from the previous sec-
tion, to an example to get the maximally permissive controls
for them. The maximally permissive control is computed
in two stages. It is assumed that the uncontrolled system
is fully observed. First stage is ofl-line-computation to find
the weakly forbidden marking sct and the boundary marking
set for the forbidden marking specifications, and to generate
masks for the control places which are inputs to the input
transition for each control path for the places in the forhid-
den specification. This ofl-line-computation is based entirely
on the structure of the TCMG, the time delays attached to
the state places, and the given class condition. Second stage
is on-line-computation to gencrate a maximally permissive
control set for the given marking, followed by the selection of
the maximally permissive controls using the control masks.

A flexible manufacturing cell, modeled by the CMG in
Figure 2 [3], is considered here, in which there are three
workstations, two part-receiving stations, and one completed
parts station. Five automated guided vehicles (ACGV’s) trans-

port material between pairs of stations, passing through zones
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hared by other AGV’s. In this example, the control objec-
tive is to coordinate the departure of AGV’s [rom stations so
that no two AGV's will occ‘upy the same zone simultancous-
ly. CMG provides good solution [3], but is somewhat restrict.
To illustrate this restriction, we make the following observa-
tions for the making m shown in Figure 2. For convinient.
illustration, we assume all the state places in AGV’'s paths
have the time constraint [2,3].

ezone 1: m € Mo and m & 8M.ones. Therefore, no
control necds o he disabled to prevent a collision in zone 1.

o zone 2 1 Since Ty, (Ucror Mgy ) N Toyp(Useror Mg, ) = B,
m ¢ 61\—4;,"&, T'herefore, control ¢4 does not need to be
disabled to prevent a collision in zone 2. In CMG, however,
M € §M.onez [3], and control ¢4 need to be disabled to prevent
a collision in zone 2.

e zone 3 : Since Ty (Wsero, MT) O Ty (Uzero, 7)) = [0, 6]
where T = {tn, t31}, m € M. ones. Therefore, disabling ei-
ther control ¢, or ¢; is necded to prevent a collision in zone
3.

e zone 4 : Since T, (Useror M77) N Ty (Uzero, mipr) = [4, 9]
where 7' = {{31, ta}, m € 6M,oned. Therefore, disabling
either control ¢7 or ¢yo is needed to prevent a collision in

zone 4.

From Theorem 1, the set of maximally permissive controls
for this marking is the controls which u(c) = 0 for ¢ € {e5}
and u(c) = 1 for ¢ € {7}, or which u(c) =0 for c € {e1, c10}
and u(c) =1 for ¢ € {cq, c10).

VI. CONCLUSION

In this paper we present a class of discrete event system-
s (DES’s) which can be modeled as cyclic timed controlled
marked graphs (TCMG?’s), a special class of timed controlicd
Petri nets’ (TCPN’s), and an eflicient method for synthesiz-
ing feedback control which permits the maximally permissive
closed-loop behavior while preventing any forbidden mark-

ings M from being reached.
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