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Abstract

The paper discusses the problem of computing coarser
observation functions in supervisory control of discrete
event systems. It is shown that when a supervisor that
realizes a given language L has certain properties, L-
realizability of a coarser observation function is equiva-
lent to control-compatibility of the states in some subsets
of the state space of the supervisor. This characteriza-
tion is then used to devise an iterative procedure of com-
puting coarser L-realizable observation functions, where
.supervisor reduction and L-realizability verification of an
‘observation function are performed at each iteration.

1 Introduction

In the supervisory control framework, first developed by
" Ramadge and Wonham [1] and then extended to the case
of partial observations by Cieslak et al. [2], a discrete
event dynamic system (DEDS) is modeled by an automa-
ton and controlled by a supervisor that observes the oc-
currences of events in DEDS through an observation func-
tion. When a desired language (behavior of the system)
L is found to be realizable, i.e., when there is a super-
visor that realizes L with an observation function, we
naturally ask if there is another supervisor that needs a
coarser observation function (less information about the
occurrences of the events in DEDS) and still be able to
realize L. This is the observation function design prob-
lem first formulated in [6]. To solve this problem, we
must have an effective method of verifying L-realizability
of a coarser observation function (L-realizability of an
observation function M guarantees the existence of a su-
pervisor that realizes L with M; see [6]).

L-realizability of observation functions has been stud-
ied in [4] and shown to be equivalent to requiring a cer-
tain structural property to hold for a pair of automata
representing the DEDS behavior and L. Also, in (7}, it
is shown that when a supervisor that realizes L has cer-

tain properties, L-realizability of a coarser observation

function implies that each state of the image (see Section
2) of the supervisor consists of control-compatible states.
The result of [7] is, however, restricted to the case where
the supervisor realizes L with perfect observation and
the coarser observation function under consideration is a
projection. In this paper, we establish the same result as
in [7] which is applicable to a wider class of cases. We
also prove the reverse implication of the statement; thus a
complete characterization of L-realizable coarser observa-
tion functions that utilizes only the supervisor structure
is given.

Using these results, we also show that if a coarser ob-
servation function M turns out to be L-realizable, a re-
duced supervisor can be constructed in a simple manner.
Thus we can use the reduced supervisor in computing yet
another observation function coarser than M. Thereflore
we suggest in the paper an iterative procedure of com-
puting coarser observation functions in which the above

results are used repetitively.

2 Preliminaries

2.1 Supervisory Control of DEDS

In the supervisory control of a DEDS, we model the sys-
tem by a finite automaton (FA) G = (Q, L, 6, ¢), where
Q is a finite set of states, o the initial state, § a state

transition function, and L a set of events. The language
L(G) defined by

L(G):={weX:bw,q)}

represents the behavior of the "uncontrolied” DEDS (here,
§(w, q)! means that 6(w, q) is defined).

An observation function M : & -» A U{e}, where ¢ is
the empty string and A a set of output symbols, repre-
sents the partial observation of the DEDS. M is extented

to £* in an obvious manner [2].
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- A supervisor (controller) is modeled by a pair § =
(S,4), where S = (X,A,¢,z0) isan FAand ¢: X — T,
T the set of all control patterns, is an output mapping. A
control pattern 4 C T signifies the control action to the
DEDS under which only the events in £ — ~ are allowed
to occur in the system. Usually, T is the union of the
set of controllable events . and the set of uncontrollable
events T,. In this case, v must contain L,; thus the
supervisor has no control over uncontrollable events.

The closed loop system consisting of G, M and § is
represented by another FA and denoted by §/G; specif-
ically, $/G = (X x Q, L, [, (20, %)), where f(o, (z g))!
(= (£(M(0), 2),6(2,0))) iff 6(0,q)!, €(M(0),2)! and & €
#(z). Thus the language L(S/G) describes the closed
loop system behavior. We note here that f(w, (zo, 90)) =
(¢(M(w), zo), 6(w, q0)) whenever it is defined. Now, if
$ has a property called completeness (S is complete if
£{(M(wo), zo)! whenever f(w,(zo,))!, 6(wo,q)! and
a € $(€(M(w),xo)), the language L(S-/G’) can be con-
veniently defined recursively by i) ¢ € L($/G) and ii)
wo € L(§/G) if w € L(S§/G), 0 € ¢(é(M(w)},x,)) and
wo € L{G). In this paper, we assume that every super-
visor is complete unless otherwise stated.

When M is an observation function for § and L(§/G)
= L, we say that S realizes L with M. The necessary and
sufficient conditions for the existence of a supervisor that
realizes a prefix-closed language L are found to be [2]:
(2) L is (4, L{G))-invariant; i.e., LE,NL(G) C L, and
(b) L is (M, X, L(G))-controllable; i.e., s,t € L, 0 € L,
s0 € L, to € L(G) and M(s) = M(t) = to € L. We say
for convenience that M is L-realizable when L satisfies
the above conditions (a) and (b).

A supervisor § = (S5,¢) is called (M, L)-normal if ¢
is given in the form ¢ = (¢o, ¢;) where

#o(z) = {0 € E.:3 s € L such that {(M(s),z0) =z
and soc € L(G) — L},

$1(z) = {o€Z.:3s€ L such that {(M(s),z5) =z
and so € L},

and ¢o(z) N ¢1(z) = @ for all z. (Note that if L € L(S),
then the condition that ¢o(z)Né1(z) = @ for all z implies
that L is (M, I, L(G))-controllable.) When § is a nor-
mal supervisor, the control pattern ¢(z) can be defined
to be any set satisfying ¢, (z)UX, C ¢(z) C Z—¢o(z); in
other words, the events in the set L. — (¢o{z) U ¢1(z)) are
redundant in determining the language L{$/G)(|7,3]).
Frequently, S is the image under M of a recognizer
for L. That is, if A = (Z,Z,n, 20) is the recognizer for L

(i.e., L{A) = L), then § = Ac(2Z — {0}, A, £, zo) where
A = M(Z) — {e}, o = {n{s,z0) : M(s)=¢}, and

{n(s,2): z € z, M(s) = §}, if it is nonempty
6(6’ .1:) =

undefined, otherwise

(Here Ac means that S is the accessible component [1] of
the automaton defined above.) We note that for d € A®,
é(d,z0) = {n(w,z) : M(w) = d} whenever the right
hand side is not empty. Thus if S is the image under M
of a recognizer for L, then L(S) = M(L) where M(L) :=
{M(w) : w € L}. We can also show that if S is the image
of a recognizer for L and if L is realizable, the sets ¢ and
¢, defined above have the property that ¢o(z)Ndi(z) = @
V z (refer to [1] for perfect observation case and to 7] for
the case of M being a projection).

For a normal supervisor § = (S, ), we can introduce
the notion of control-compatible states; z; is control-
compatible to z,, written z, ~ za, if ¢o(z1) N $1(z2) =
0 = ¢1(z1) N do(z2). The notions of normal supervisors
and control-compatibility proved to be useful in treating
the supervisor reduction problem {3} and in computing a

maximal projection {7].

2.2 Equivalence and Coarseness of Observation
Functions

Let M, and M,; be observation functions. M; is said to
be equivalent to Ma, written My = My, if (i) M[!(e) =
M;j(e) and (ii) Voy,02 € £, My(01) = Mi{o) iff Ma(0y) =
M, (03). Also, M, is said to be coarser than M, written
M, < M, if (i) M{!(e) € M;(e) and (ii) Voi,07 €
L — M7Ye), Mi(o1) = Mi(oz) = M;y(oy) = M(o2)-
Equivalent observation functions convey exactly the same
amount of information to the supervisor; thus we consider
them identical. Note that if M; = M;, then M; < M,

and M; < M, and vice versa. The following fact is also

an immediate consequence of the definition: if M; < M;,
then M, (s) = M, (t) implies Ma(s) = M;(t).

3 Characterization of L-Realizable
Coarser Observation Functions

In this section, we characterize the L-realizable coarser
observation functions in terms of some structural prop-
erties of the supervisor. Let L(G) and L be given, and
assume that L is (4, L(G))-invariant. Let Mp: £ — A
be an L-realizable observation function and let § = (S, ¢)
with § = (X, A, ¢,z0) be a (M, L)-normal supervisor
that realizes L with M. Finally, welet M : ¥ — A
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be anobservation function such that My < M. In what

follows, we restrict ourselves to the following cases:

(M1) M, and M are projections
(M2) My e) = M (e).

Now define a mapping M : My(Z) - A by
M(8) = M(0) where o € M;(6).
Lemma 1 M has the Jollowing properties:

(a) M(e) = ¢

(b) M is well defined

(¢} for the case (M1), M [Ma(z)~ ()= M |nto(z)-(0}
(d) M(o) = M(Mo(0))

Proof: (a) Trivial.
(b) For the case (M1), M;1(6), § # ¢, is a singleton
set. Thus M is well defined. Consider the case (M2). If
o1, 02 € Mg1(8), 6 # € (i.e., My(0) = My(02) # €), then
o1, 03 € T — Mgl(e) = T — M~!(e). Since My < M,
M(0y) = M{03). Thus M is well defined.

(¢) Trivial.

(d) If o € Mg (¢), then o € M~(e) since My < M. Thus
M(o) = e and M(My(0)) = M(e) = e. Suppose that o ¢
Mg (e). For the case (M1), M (Mo(0)) = M(o) = M(o)
where the last equality follows from (c). Consider the
case (M2). By the definition, M(Mo(0)) = M(of) where
ot € My (Mo(0)), i.e., My(ol) = My{o). Since My < M
and o, of & Mg (e} = M~(e), M(ol) = M(o).

-

M(M(o)) = M(0). 1

Hence

We extend M to (M,(E))* by defining N(d§) =
M(d)M(8) for all d € (Mp(E))*, 6 € My(E). It then fol-
lows that if My < M, M(s) = M(Mo(s)) for all s € Z°.

Now we define a set Xj(d) of states of the supervisor
$ for each d € (M(Z))*:

Xum(d) = {€(e,z0) : M(e) =d}.

Note that Xy/(d) is a state of the image of S under M,
and thus the set of different Xj(d)’s is finite.

Proposition 1 If X)((d) consists of control-compatible
states for each d € (M(X))*, then M is L-realizable.

Proof: Suppose to the contrary that M is not realiz-
able. Then L is not (M, Z,, L(G))-controllable since L
is (D4, L{G))-invariant. Thus there exist s,t € L with
M(s) = M(t) := d such that for some 0 € T, s0 € L
and to € L(G) — L. Hence, if we let z = £(My(s), z,)

and y = §(Mo(t),z0), then o € ¢,(z) and o € o(y).
Thus z and y are not control-compatible. Now note that
M(My(s)) = M(s) = d = M(t) = M(M,(t)). Thus
z,y € Xp(d). Therefore we have the set Xy (d) where
some states are not control-compatible, which contradicts

the assumption. ]

The converse to Proposition 1 is not true in general.
However, if the supervisor satisfies certain conditions, the
converse statement can be shown to hold. Before stating
what conditions are required for the supervisor, we intro-
duce the notion of subautomaton.

Let A = (Q4,L,84,940) 2and B = (Qp,%,65,9p0) be
two accessible FA’s with L(B) € L(A). The FA B is said
to be a subautomaton of A if 65(s, gpo) = 64(s, gao) for all
s € L(B). In this case, we necessarily have that Qg C Q4
and g40 = gpo. We also note that given two FA’s G,
and G; with L(G;) ¢ L(G;), we can always construct
two FA’s A and B such that B is a subautomaton A4,
L(A) = L(G,) and L{B) = L(G,) (see [5] for details).

Now consider the following conditions for the FA S:

(S1) L(S) = Mo(L)
(52) if &(Mo(ws), x0) = €(Mo(wa), zo) for wy,w; € L,
then the following implications hold:
i) wyo € L = 3wz € L such that
My(ws) = My(w;) and wgo € L
il) wyo € L(G) — L = J ws € L such that
Mo(ws) = Mo{w,) and wyo € L(G) — L

The condition (S2) above looks hard to satisfy. However,
an FA S satisfying the above conditions can be easily

constructed as demonstrated in the following lemma.

Lemma 2 Let G, be a subautomaton of G with L(G,) =
L, and let S be the image of G, under M,. Then S sat-
isfies the conditions (S1) and (S2).

Proof: Clearly, (S1) holds since S is the image of G,
under M. Suppose that wy,w, € L and ¢(My{w,),zq) =
¢(Mo(w;), To). Let ¢ = 6,(wi1, go). Then ¢ = é(wy, g0) (G,
is a subautomaton of G). Moreover, ¢ € £(My(w,), 7o)
since S is the image of G, under M,. Thus we have that
q € £(Mo(w;), =¢). Hence there is ws such that My(ws) =
Mo(w;) and 6,(ws, o) = ¢. Note that ws € L(G,) = L.
Also, 6(ws,g0) = ¢ since G, is a subautomaton of G.
Now if wyo € L, then §,(0,¢)! so that §,(wsa,q)!, i.e.,
wyo € L. f wyo € L(G) — L, then §(o,q)! and §,(0,q) is
undefined. Therefore §(wso, g)!, i.e., wso € L{G). Also,

6,(w30,¢o) is undefined, ie., wgo ¢ L. Hence wzo €
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L(G) - L. 1

We now present a technical lemma that is useful when

we prove the converse statement to Proposition 1.

Lemma 3 Assume (S1) and let d € (M(Z))*. Ifz €
Xn(d), then there exists s € L such that M(s) = d and

E(Mq(s), z0) = z.

Proof: Let z € X (d). By the definition of Xy(d),
there exists d; € (My(Z))* such that M(d,) = d and
é(di,zo) = z. Note that d; € L(S). Since L(S) =
My(L) by (S1), there exists s € L such that My(s) = d;.
Note that £(Mo(s), zo) = z. Also, M(s) = M(M,(s)) =
M(dx) =d. 1

Proposition 2 Assume (S1) and (S2). If M is L-
realizable, then Xp(d) consists of control-compatible states

for each d € (M(X))".

Proof: Suppose that the conclusion ;ioes not hold for
a set Xp(d), d € (M(X))". Then there exist z;,z; €
Xnm(d) and ¢ € I, such that 0 € ¢o(zy) N $1(zz). It
follows from the definition of ¢o and ¢; that

(*) 3 u,v € L such that ¢(My(u), 7o) = z3,
E(Mo(v), o) = za,u0 € L(G) — L and vo € L.

Also; z1, 23 € Xp(d) implies (Lemma 3) that

(**) 3 s,t € L such that M(s) = M(t) =d,
f(Mo(s),zo) = r; and f(Mo(t)ylo) = 3.

From (*) and (**), we have two strings u,s € L such
that £(Mo(u),zo) = &(Mo(s),zo) and vo € L(G) — L.
By (S2), there exists s € L such that My(st) = Mo(s)
and sto € L(G) — L. Similarly, there is t/ € L such
that Mo(t/) = Mo(t) and t# € L. Note that M(s/)
M(Mo(st)) = M{(M,(s)) = M(s). Similarly, M(t/)
M(t). Recall from (**) that M(s) = M(t). So M(s/)
M({tr). Hence we have two strings of events s, t! € L
and o € I, such that M(s/) = M(t1), sto € L(G) - L
and tto € L. Therefore M is not L-realizable, which is a

I

contradiction. Thus we proved the proposition. 1

Proposition 2 is a generalization of the result in [7]
where only the projections are considered as observation
functions and My is restricted to be the identity map-
ping. Now Proposition 1 and Proposition 2 give a com-
plete characterization of L-realizable coarser observation
functions; that is, if the supervisor has the properties
(S1) and (S2), then L-realizability of a coarser observa-

tion function M is equivalent to control-compatibility of
the states in Xps(d) for all d € (M(Z))".

4 Iterative Procedure of Computing
Coarser Observation Functions

Let § = (S,¢) be a (My, L)-normal supervisor where S
satisfies (S1) and (S2). Suppose that an observation func-
tion M with My < M has been verified, by the use of
the result in Section 3, to be L-realizable. Thus each
Xum(d) consists of control-compatible states. As noted
earlier, each Xn(d) is a state of the image Sy of S un-
der M. In other words, if we let Sp = (Y, A, ¢, w), then
¢(d,vo) = Xpe(d) = {€(e,z0) : M(e) = d}. Note that
the set of events in Sy, i.e., M(X) — {e}, has a smaller
cardinality than that in S. Also, the number of states of
Swu is frequently smaller than that of S. Now we ask: can
we construct a (reduced) supervisor Spy = (Sp, ¢as) that
realizes L with M? If so, does (or can we make) the su-
pervisor Sps have the property that Sps is (M, L)-normal
and Sy satisfies the conditions (S1) and (S2) with M, re-
placed by M? If the answers to these questions are yes,
then we can attempt to get, by investigating the control-
compatibility between the states in Spr, yet another ob-
servation function that is coarser than M; thus we could
devise an iterative procedure where the original observa-
tion function gets coarser and coarser as the number of
iterations increases. Before we answer the quetions raised
above, we present an important result on the closed loop

system behavior for the case of normal supervisors.

Proposition 3 Let L C L(G) be closed and (E., L(G))-
tnvariant. Let T = (T,¢) be a (M, L)-normal supervisor
with M(L) C L{T). Then T is complete and realizes L
with M.

Proof: Let T := (Z,A,n,2) and let T/G := (Z x
Q,Z,9,(20,9))- We prove the statement in three steps.

(2) (L(T/G) c¢ L) We prove by induction. First,
note that ¢ € L{(T/G) and ¢ € L. Suppose now that
wo € L(T/G), i.e., g(wo,(20,¢))! By the definition of
g, g(w,{z0,9))! (i.e., w € L(T/G)), é(wo,q)! (ie.,
wo € L(G)}, n(M(wg), 2)! and o € y(z) where z =
n(M (w), 25). By the induction hypothesis, w € L. Now if
o € L., wo € L since L is (., L{G))-invariant. Suppose
thato € .. f wo & L, then 0 € ¥(2), which contradicts
the fact that y¥(2z) N¢e(z) = 0. Thus wo € L.

(b} ( T is complete) Suppose that g(w,(20,40))!,
§(wo,q)! and o € ¥(z) where z = n(M(w),2). By
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_the result (a), w € L. Since wo € L(G), we must have

that o € l/)l(Z) UX, Nowifo € I,, then wo € L
since L is (24, L{G))-invariant. Since M(L) < L(T),
M(wo) € L(T) and therefore n(M(wo),20)! Suppose
that 0 € ¥,(2). Then there exists s € L such that
n(M(s),29) = z and so € L. Again, by the assumption
that M (L) C L(T), n(M(sc¢), 20)!, which in turn implies
that n(M(o),2)! Recall that n{M(w),z) = z. Thus
n{M(o),z) = n(M(wo),2). Therefore n(M(wo},z)!
Hence we have established that T is complete.

(c) (L € L(T /G)) We prove by induction. If wo € L,
then w € L. By the induction hypothesis, w € L(T /G).
Let (M (w), z) = 2. It follows from the definition of
o € ¥1(z) C ¥(z). Hence, by the definition of L(T /G)
for complete supervisors, wo € L(T /G). I

In what follows, we will answer the questions of the

beginning of this section.

Proposition 4  Let S satisfy (S1) and (52), and let
My < M. Then the image Sy of S under M also has the
properties (S1) and (S2) with My replaced by M.

Proof: Since Sy is the image of S under M and since §
satisfies (1), L(Snm) = M(L(S)) = M(Mo(L)) = M(L).

Thus Sy satisfies (S1) with My replaced by M.
Recall that Sy = (Y, A,¢,v0) and

¢(d,vo) = Xm(d) = {€(e, z0) : M(e) = d}.

Now let wy,w; € L and suppose that ¢(M(w;),y) =

¢(M(wz), vo). Let = = é(Mo(w,), zo). Since M (Mg(w,)) =
M(w;), z € ¢(M(w1), yo), and therefore z € ¢(M(w;), yo)-
Thus there exists ¢ € A* such that M(e) = M(w,) and

é(e,zo) = z. Since e € L(S) and L(S) = My(L) by (S1)

for S, wecan choose u € L such that My(u) = e. Thus we

have that wy,u € L and £(Mo(w1),z0) = £(Mo(u),zo)-

Suppose now that w0 € L. Since S satisfies (52), there

exists v € L such that My(v) = My(u) and vo € L. Note

that M(v) = M(Mo(v)) = M(Mo(u)) = M(e) = M(w,).

Similarly, if wyo € L(G) — L, then there exists v € L

such that M(v) = M(w;) and vo € L(G) — L. Hence Sy

satisfies (S2) with Mo replaced by M. 1

We now construct a supervisor Sy = (Sur, dur) for G
by defining ¢pr as follows: ¢ar = (drr0, $an) Where

dao(y) = LEJ $o(z) and danly) = U é1(z)

z€Y

Proposition 5  Let S satisfy (51) and (52), and let M
be L-realizable. Then Sps is (M, L)-normal and complete,
and realizes L with M.

Proof: We prove in three steps.
(1) Let

9= {o€Z.:3s€ L suchthat $(M(s),y0) =y
and so € L{G) — L},

I} = {o€Z.:3s€ Lsuchthat ¢((M{s),v0) =y
and so € L}.

We show that dao(y) = EY and ¢an(y) = Z). If 0 € £,
there is s € L such that ¢(M(s),yo) = y and so € L(G) —
L. Let £ = £(Mo(s),z0). Then o € ¢o(z). Moreover,
z € ¢(M(s),¥) = y since M{My(s)) = M(s). Hence
0 € ¢amo(y). Now suppose that o € drro(y). Then there
is € y such that o € ¢o(z). By the definition of ¢y, there
is s € L such that £(Mo(s),z0) = z and so € L(G) — L.
Now let d € A® be such that ¢(d,y) = y (such d exists
since Sy is accessible). Since z € y, z € ¢(d,yo}. Thus
z = ¢(e, 7o) for some e with M(e) = d. Since e € L(S)
and L(S) = My(L) by the property (S1), there exists
w € L such that Mg(w) = e. Hence we have s, w € L such
that £(My(s), zo) = =z = £(Mp(w),zo). By the property
(S2), so € L(G) — L implies that there is ¢ € L such
that Mo(t) = Mo(w) and te € L(G) — L. Note that
M(t) = M(My(t)) = M(Mo(w)) = M(e) = d. Thus
s(M{t), %) = ¢(d,v0) = y. Hence 0 € L. We thus
established that £Y = dar0(y). Similarly, I} = éan(y).

(i) We show that épel(y) N éanly) = @ for all y.
Let y € Y be arbitrary. Then y = Xy (d) for some
d € (M(X))*. Since M is L-realizable, Xar(d) consists
of control-compatible states (Proposition 2). In other
words, ¢o(z1) N ¢1(zz) = 0 for all z;,z, € y. Hence we
must have that ar(y) N éan(y) = 0.

(iti) By (i) and (ii), we showed that Sy is (M, L)-
normal. Also, L(Sa) = M(L) by Proposition 4. It there-
fore follows from Proposition 3 that Sy is complete and
realizes L with M. 1

Now we have an (M, L)-normal supervisor Sy = (Sar,
$r) that observes the DEDS G through a coarser map-
ping M and realizes L. Moreover, Sys satisfies (S1) and
(S2), and therefore we could continue to seek for another

observation function, which is coarser than M, by using

the structural properties of Spr. We note that the sets
Xm(d)'s form a "cover”, for the case of partial observa-
tion, which is a key notion used in supervisor reduction
problems ([3,7]). We summarize the above discussion in
the form of an iterative procedure of computing coarser

observation functions.

Procedure A: Given an (Mo, L)-normal supervisor § =
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(b."o, ¢°) with S, satisfying (S1) and (82),

Step 0. 1= 0.

Step 1. Select a coarser observation function M,
such that M; < M;,;.

Step 2. Construct the image S;y; of S; under M;y;.

Step 3. Check if each state Xjy,

i+1(d) of Siyy consists

of control-compatible states of S;. If not, go to Step 1.
Step 4.

(Sit1,6'*!) by defining ¢'*! in the same manner as shown

Construct the reduced supervisor S$;4; =

before Proposition 5.
Step 5. t =1+ 1 and go to Step 1.

We should note here that there is already an effective
method [4] of verifying (M, ., L(G))-controllability of L,
or equivalently L-realizability of an observation function
M. In the method of [4], the image of G, under M must
be constructed and a condition equivalent to the control-
compatibility should be verified for every state of the im-
age. Thus both the result in Section 3 and the method in
|4] require the construction of the image of an automaton
under M. The differences between the two are: first, the
result in Section 3 utilizes only the supervisor structure
while the method in [4] need to look into the structures
of both G and G,. Verification of the condition required
for each state of the image is simpler in the result of this

pape}. Second, there is a restriction in using the result

in Section 3 that either (M1) or (M2) must be the case
for My and M. On the other hand, any observation func-
tion M can be tested by the method in [4]. When we
attempt to coarsen the original observation function suc-
cessively, however, the use of the result of this paper is
much more advantegeous because we can work with the
supervisor Whose structure continues to get simpler as we
proceed. Moreover, a reduced supervisor is obtained as a
by-product at almost no cost in each iteration. Therefore
whenever we stop the iteration, a reduced supervisor for
the final observation function is right there for use.
Finally, we consider again the restriction that in Pro-
cedure A, either M;’s are projections or M 1(€) = My (e)
for all 7. In view of this restriction, we suggest to use
Procedure A in the following manner: when M is the
identity mapping or a projection, use Procedure A to get
a maximal projection Pp,.. Let My = Pp,.. Use Proce-
dure A to get a maximal observation function Mp.,. with
M1 () = P;l,(e). Then Mpg, is a coarsest L-realizable

observation function.

5 Conclusion

In this paper we showed that if a supervisor that re-
alizes L with M, has the properties (S1) and (S2), L-
realizability of a coarser observation function M is equiv-
alent to control-compatibility of the states in X((d) for
each d € M(X))*. We then showed that we can con-
struct a reduced supervisor in a simple manner which
has X (d)’s as states and possesses the properties (S1}
and (S2). These results thus led to suggesting an itera-
tive method by which the original observation function
continues to get coarsened.

The results of the paper are applicable only to the
case where the observation functions are projections or
their inverse images of ¢ are the same. The paper did
not deal with the problem of how to get a coarser L-
realizable observation function; only the method of ver-
ifying L-realizability of a "candidate” observation func-
tion has been presented. The problem of obtaining such
observation functions should be one of the future research
topics in this area. Some results on this issue were re-

ported in [6,7] for the case of projections.
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