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Abstract

In this paper, the variable structure model following con-
trol scheme s proposed for the nonlinear robot manip-
ulator system. The proposed control system guarantees
that the system stale is in the siiding mode for all time t.
Therefore, error transient can be prescribed in advance for
all time. Furthermore, overall system is globally exponen-
tially stable. Chattering problem is reduced by the intro-
duction of a boundary layer. Simulation results are given

to show the usefulness of the proposed control scheme.

1 Introduction

Model following adaptive control{MFAC) methodologies
have recently received great attention in the robot manip-
uldtor control design [1]-[4]. These existing designs are
based on one of the following adaptive design method-
ologies for linear plants with unknown parameters. They
are the design methods based on hyper-stability theory,
the Lyapunov stability methods, and the self-tuning reg-
ulator type techniques. But the strict positive realness
is invafiably required. Furthermore, some of them can
only guarantee the error between the states of the model
and those of the controlled plant going to zero, the tran-
sient behavior of this error is not presented. In addition,
modetl following error goes to zero asymptotically, i.e., we
could not say about how fast tracking error decreases.
The advantage of the model following variable struc-
ture control lies in its abilily to prescribe transient re-
sponse requirements as well as providing a robust con-
troller {7]-[9]. In the Leung’s paper {5}, the adaptive vari-

able structure model following control (AVSMFC) design

was proposed for accomplishing trajectory tracking in a
nonlinear robot system which ensures the stability of the
intersection of the surfaces without necessarily stabiliz-
ing each individual one. The proposed approach avoided
the difliculties linked to the strict positive realness re-
quirment in traditional MFAC by taking advantage of

the inherent positive definiteness of manipulators inertia

matrix, and is easily extendable to a higher number of
links. But the control methodology didn’t guarantee that
the system states are on the sliding mode from the initial
time in the case that the initial conditions for mode and
plant are exactly matched. The each sliding functions
s; has gone away from zero as shown in the presented
simulation results in |5].

In this paper, variable structure model following con-
trol system is considered for accomplishing trajectory track-
ing control in a nonlinear robot system. The proposed
control law guarantees that the system states are*on the
sliding mode for all time. Therefore, error transient can
be prescribed in advance for all time. Furthermore, it is
shown that the overall system is globally exponentially
stable. Chattering is eliminated by restricting the state

of the system to slide within a boundary layer.

2 Modeling for Robot Manipula-

tors

The dynamic equations of motion for a general rigid link
manipulator having n degree of freedom can be described

as follows:

M(q)§ + F(g,9)§ + G(q) = u(t) (1)
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where ¢ € R" is joint angles, v € R" is applied joint

torque, M(q) = MT(g) > 0, M(g) € R™" is the iner-

tia matrix, F(g,¢)¢ € R" is the centrifugal and Coriolis

torques, and G(g) € R" is the gravitational torque.
Defining z € R*" to be the vector

1)

equation (1) can be written in a state variable form
q
M(q)~*(9)(—F(9,9)d — G{a))

0
+ N ] u (2)
M~'(q)
o I 0
= T+ u (3)
Al Az B1
= Az + Bu. (4)

And the reference model is of the form

d | gm 0 I 9m 0
3[%} Am Amz][dm]+[Bm,]'(5)

= ApZm+ Bur (6)
where 1, = (¢7. ¢T)T € ®™", A,, € R B, € R

are constant matrices, r € R” is an external input vector.

3 Controller Design
Define the sliding surface s € R" as a hyperplane
s=GE-N(t)=Ge+é—-N(t)=0 (7)

where % = x,, — € R*™ is tracking error vector, G €
R"*I" is a constant matrix and will be determined as
follows.

Let 2 = (e7 ¢7)7, e = gm — ¢, € = 4m — ¢, then the

sliding hyperplane becomes

s = G2—N(t)=Ge+é— N(t),
Gy = diag{g1, ", 9n},
Ni(t) = (gie(0) + é(0))e™™",

where, g;, A; > O for all ¢ = 1,2,.--,n. If the sliding
mode exists on s = 0, then from the theory of variable
structure system, the sliding mode is governed by the
following linear differential equationn whose behaviour is
dictated by the sliding hyperplane design martix G} and
N{t)

é+ Gie= N(i). (8)

In order to derive the control law, the following assump-
tions are required.

Assumption 1:

(I- BB*)B,, =0 (9)
(I - BB*)(A. —A)=0 (10)
(I~ BBY){(An + A,) =0 (11)
where
A = 0 ~1I
G (I +Gy)

and B is pseudo inverse of B given by B* = [0 B!},
where B;! always exists because B! is inertia matrix
M(q).

Remark: We refer to equation (9)-(11) as matching con-
ditions, which can always be satisfied due to the special
structures of B, B, A, A, An, and B*.

Define the control law of the following form

u = HKyz+ Kyr + K33+ K8+ KgAN
—(allz|l + aslir|| + asl|z]| + ol s]|
+asA|N| + n)sgn(s) (12)

where K, K3 € R™**" K, K, Ks € R™", K3 € R
are constant matrices, 7 = {71,792, -+, 7 ]T, ni > 0for ¢
= 0| la s n, lNl = “NllleZIt"'lenHTy A= diag(Al)

Az, -0+, An}, and

1 ifs>0
sgn(s) = 0 ifs=0 .
-1 ifs<o0

Differentiating s in the equation (7) with respect to time
gives
5 = GZ+AN()
= G(AmZm + Bmr — Az — Bu) + AN(t)
= GlAn(z —zn) + (Am + A,)zm + Br
—(A+ A.)z — Bu] + AN(t)
= —5+GB[B*(An— A)z + B*B,r
+B* (Am + An)E — u] + AN(t)
and then, multiply both sides by B;! and insert the con-

ttol law. Then, we obtain the following equation.
Bi's = —B's+ B'GB[(B*(An — A) - K,)z

+(BY By — Ko)r + (B (A + An) — Ki)e
~Kys ~ K AN
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~(eufizll + eallrl] + sl 2] + exalls]l
+asA|N|+ n)sgn(s)] + By 'AN. (13)

Here, we assume that the following condition is satisfied.

Assumption 2:

1B*(Am ~ A) = K| < o
|B* B,, — K| < a2

IB* (Am + An)
BT + Az) + K|l < oy
IB! — Ks|| < as.

- K;” < g

Remark: Due to the mechanical characteristics of robotic
manipulators and the boundness of the reference model,
the assumption is valid [5].

Then, we can derive the following theorem.
Lemma 1 For the robot manipulator plant ({}, and model
(6), and the control law (12), the sliding mode ezists from
a given initial siate.
Proof

Consider the following Lyapunov function candidate:
1
V= EsTB,“s. (14)

Differentiating V with respect to time ¢ and using equa-

tion (13), we can obtain the following equality.

14

I

ST [B7's - B Axs)

= T [(B*(Am — A) ~ Ki)z + (B* B, — Kp)r

A (BY(Am + A) — Ki)e — (B + A) + Ko)s
+(B7! - K JAN — (en]lz]l + ealir [+ osflw]]
+oulls|| + asA|N| + n)sgn(s)] + By'AN.

Because of Assumption 2, the following inequality can be

derived.

f/g—ijn.]s.-|<0. (15)

i=1
Therefore, V is really a Lyapunov function. And the Lya-
punov function V (t) is equal to zero for all time because
V>O,V:Oistrueonlyfors-——OandVgO,V:Ois

true only for s = 0, and V(0} = 0. This also implies that
s=0 Wt>0 (16)

Thus, the system state is forced to stay in the sliding

mode from a given initial state.

Remark: The evolution of the i-th joint’s model tracking

error, ¢;(t), can be predicted as

25 [(6:(0) + kie; (0))e
ei(t) = ¢ —(&(0) + Xei(0))e kY if ki # A,
e (0)e™™ + (&(0) + Ne(O))te™™t il Ky = A,

(17)
for all time ¢t > 0.
Proof
Using equation (16), we can obtain the following equa-

tion.

S,'(t) = é,‘(i)+A;e.'(l)——(E'.'(O)*i’A.'e,'(O))e_k"‘ =0 vt 2 0

where 1 = 1, 2, -+, n. By solving the above differential
equation, we can easily conclude that the tracking error
is given by equation (17). Since the detail derivation is

somewhat tedious, we omit the details.

O

Irom the above lemma, we can conclude that the time
history of the tracking error for each joint can be pre-
dicted completely for all time and they are decoupled
each other. Therefore, we can derive the [ollowing theo-
rem.

Theorem 1 For the robot manipulator (1) and the con-
trol law (12), the overall system is globally ezponentially
stable.

Proof
Let’s choose the constants A;, B; as follows:

R ki
A, |k'/\l[le'0)+ e;

B; min {X;, &}

(0} + 1é:(0) + Aies(0)] ]

where ¢ = 1, 2, ---, n. Then from equation (17), it is
obvious that the following inequality is guaranteed for all
i!

jei(t)] < Aje B, vt > 0.

Therefore, the overall system is globally exponentially

stable.

4 Simulation Results

A 2-link robotic manipulater model used by Young [9]
was used for the simulation. Figure 1 shows the manip-

ulator. The dynamic equation is given by
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M(q)§+ F(q,§)d+ G(q) = u

where ¢ = (¢ 92]1‘

My = {my+my)r] + merd + 2myrirycos gy +
My, = M= mzr; + MaT 72 COS @2
M,, = m;r; + Jy

Fy, = —2mgyriryg;sing,

Fia = —myrirgzsing

Fyy = myrirgising

Fp = 0

Gy = {{my +my)ricos g + marpcos(q + g2} } g
G; = maragcos(q + q2).

Parameter values used are same as those of (9].

ry=1m, r;=08m,
Jy = 5kg-m, J;=>5kg-m,
m,y = 0.5kg,

0.5kg < m, < 6.25kg,

In order to avoid the chattering phenomenon, the func-
tion sgn(s) in the controller (14) has been replaced by

sat(s). The function sat(s} is defined as follows

1 s> 6
sat(s) = s/é Is|<é ,
-1 s< —§

where 6 = 0.05 .

Figure 2 shows that each joint angle error decreases
exponentially to zero. And Figure 3 shows the control
input torque for that case. The control input is smooth
for the introduction of saturation function with é§ = 0.05
instead of sign function. Figure 4 shows that the sliding
function s; and s, were confined to the predetermined
boundary 6 = 0.05, and the fact means that the system
stateis in the sliding mode for all time t. Figure 5 shows
the phase portrait for joint 1 and 2 of the robot manip-
ufator.

in the Leung’s controller simulation results, Figure 12
and 13 have shown that the sliding function started from
zero ( s, = 0, s; = 0} is initially away [romn zero. In
addition, the sliding function s; gone away from the pre-
determined boundary layer 8, = 0.05 as shown in Figure
12 of Leung’s paper [5]. However, for the proposed con-
trol law designed by the concept that the overall system

ensures the stability of the intersection of the sliding sur-

*

faces without necessarily stabilizing each individual one,
all s; is confined to predetermined boundary layer for all
time ¢t. Therefore, error transient can be predetermined

in advance.

5 Conclusions

In this paper, the variable structure model following con-
trol method is proposed. The proposed control scheme
ensures the system state is on the intersection of the sur-
faces from a given initial state without necessarily stabi-
lizing each individual one. Hence, the control system also
guarantees that the controller designer can prescribe the
transient response of the joint error. Furthermore, overall
system is globally exponentially stable. So, we can assign
the tracking error decreasing rate, though MFAC method
can guarantee only the asymptotic stability. Chattering
during the transient phase can be reduced by using the
boundary layer technique. Simulation results show the

good performance of the robot manipulator.

References

[1] M. Takagaki and S. Arimoto, “An Adaptive Trajec-
tory Contro} of Manipulators,” International Journal

of Control, vol. 34, No. 2, pp. 219 — 230, 1981.

[2] A. J. Koivo and T.-H. Guo, “Adaptive Linear Con-
troller for Robotic Manipulators,” IEEE Trans. Au-
tomat. Contr., vol. AC-28, pp. 62 - 171, 1983.

3

S. Nicosia and P. Tomei, “Model Reference Adaptive
Control Algorithms for Industrial Robots,” Automat-

tca, vol. 20, pp. 635 - 644, 1984.

{4] S. N. Singh, “Adaptive Model Following Control of
Nonlinear Robotic systems,” IEEE Trans. Automat.

Contr., vol. AC-30, pp. 1099 - 1100, 1985.

=

Tin-Pui Leung, Qi-Jie Zhou, and Chun-Yi Su, “An
Adaptive Variable Structure Model Following Con-
trol Design for Robot Manipulators”, IEEE Trans.
Automat. Contr., vol. AC-36, pp. 347 — 353, March,
1991.

[6] K. D. Young, “Controller Design for a Manipulator
using Theory of Variable Structure System,” /EEE
Trans. Syst., Man, Cybern., vol. SMC-8, pp. 101109,

1978

— 522 —



7]

(8

(9]

0.5

F. M. Devaud and J. Y. Caron, “Asymptotic Sta-
bility of Model Reference Systems with Bang-Bang
Control,” IEEE Trans. Automat. Contr., vol. AC-20,
pp. 694-696, Oct., 1975,

K-K. D. Young, “Asymptotic Stability of Model Ref-
erence Systems with Variable Structure Control,”
IEEE Trans. Automat. Contr., vol. AC-22, pp. 279~
281, April, 1977.

K-K. D. Young, “Design of Variable Structure Model

Following Control Systems,” I[EEE Trans. Automat.
Contr., vol. AC-23, no. 6, pp. 1079-1085, 1978.

T T T
\Joim 1
\
oint 2 )
; i Lo, - ]
0 2 4 6 8

Time (sec.)

Figure 2. Tracking Error for Joint 1 & 2
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Figure 3. Control Input Torque for Joint 1 & 2
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Figure 4. Sliding Function for Joint 1 & 2
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Figure 5. Phase Portrait
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