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Abstract

A study abont two-dimensional pursuit-evasion dy-

namic games is presented and discussed. A pursuer tries”

to intercept an evadet by a strategy based on proportional
navigation guidance, while the evader tries to maximize a
miss distance by the optimal control. The study is applied
to a ball game and an air-coinbat game. The results show
the same features exist in both games, therefore the study
will be able to apply for general two dimensional dynamic
games. [n the ball game, the study is extended to cases
where a goal exists,while in the air-commbat game, some
three-dimensional problems are solved and the results are

also shown.
Introduction

A two-player game is the problem where there is a
common perlormance index and one player strives to max-
imize il, while the other, to minimize it. 1{ the whole
process is dynainic, and expressed by a set of ordinary dif-
ferential equations, we call the problem, as a "differential
game”. The kind of problems have attracted considerable
interest in recent years and many studies have appeared
in the literature. Hqwever, their results still seem Lo be
difficult to apply to actual dynamic games. That is, most
studies have been devoted to obtaining precise mini-max
solutions for very simplified problems.

The early studies of Isaacs! and Merz? showed the
existence of a large number of different kinds of solutions
for a very simple problem called the "homicidal chaufleur”.
Actually, an enormous number of solutions may exist for
multidimensional nonlinear differential games to know all
the diflerent kinds of solulions. It may be more helpful
to us to find some features of the solutions under some
assumptions, even if they are not precisely solved by a
differential game approach.

This paper studies the pursuit-evasion problem be-
tween two players, which may be ball game players or a
missile and an aircraft in an air-combat game. The pur-

suer is assumed to employ PNG(proportional navigation
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Fig.1 Pursuer and evader symbols

guidance) whicl is obtained as the optimal control against
a nonmaneuvering target. The evader tries to maximize
tniss distance, however in a ball game where a goal exists,
it has to reach the goal at the terminal time. The optimal
controls of the evader are its lateral and longitudinal accel-
eration cormmands. The problems are reduced to nonlincar
two-point boundary value problems, and are solved by the
steepest ascent method. >~

Mathematical Model

Fignre 1 shows some symbols of two players in a
plane. The equations of motion are given by
U, = dy. (

I, = v, COS 1, (

Yo = U, 8in 1, (

o= o/ (

I, = U, COS Yy, (

Up = Uy SIN Yy (

d’r =a,/v, {

a, = (apc - a,,)/r,. (

where subscripts ”p” and "e” shows those of pursuer P and
evader F, respectively. = and y are cartesian coordinates,
v is velocity, ¥ is azimnth of the velocity vector, a is lateral

acceleration, a,. is longitudinal acceleration of the evader.

The pursuer {ateral acceleration is approximaled by a fiist
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Fig.3 Optimal solution No.1 (ball game,
without velocity control)
order lag 7, to a lateral acceleration command a,,, which
is given by

Noveg  for [N, v 0] < Gpemas
(pe = (9)

Opemar Sign(F)  for [N, ve 6] > Gpomas
where the sighmin function Sign takes the value £ 1 ac-
cording to the sign of ¢.

In Eq.(9), N, is the eflective navigation ratio, v, the

closing velocity, and ¢ the line-of-sight turning rate given
by

Ve = =17, 1,7y ) /7 (10}
(Fyre —TyTo )}/ 72 (11)

where 7 is relative range, r, and r, are its cartesian con-

i

g
ponents,

Tr = Le — Ly, Ty = Ye = Yp,

r=(r2+r2)} (12)

The performance index J is ry, which is the value of r at
the terminal time ¢,

J=rp=r(t)) (13)
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Fig.4 Optimal solution No.2 (ball game,
without velocity control)

where {; is the closest point of approach time determined

from the next stopping condition Q.
Q=d/dt(r?)=0 ()

The J in Eq.(13) 1s maximized by the steepest ascent
method, in relation to two control parameters, viz. the
evader’s longitudinal and lateral accelerations a,, and a,

under the following constraints.

10ye] < Quemas (15)
lete] < emas (16)
‘”',"ll'l S '“' S 1"'"!1‘ (17)

Ball Game Application (Without a Goal, Without
Velocity Control)

In order to show a feature of optimal evasion, sim-
ple cases are shown where the evader velocity is constant,
and without a goal. Figure 2 shows the initial condition
of P and E, where nominal values v, = Tinfs, v, = 5m/s,
pemar = Oecmar = 8M[fs?, Ny =4, 1, = 0.4s are selected.
In the case initial distance =, = 24m, we obtain two kinds
ol local optimal solutions shown in Figs 3 and 4. In the
figures, the pursuer and evader trajectories, histories of
Gpe, 0, and a, are shown. In Fig.3, F takes first positive
maximum a,, then aller 0.5s, reverses its sign. The early
behavior is cansidered as a kind of feint action. In Fig.4, E
takes negative maximum a, throughout the game. The r,
values resulted in Figs 3 and 4 are 4.13m and 12.16m, re-
spectively. Both are local optimal (neighboring extremat)
solutions, however, the latter is the globally optimal solu-
tion. There are solutions symmetrical to ¥igs 3 and 4 in
the sign ol a,, therefore four local optimal solutions exist
in this casc.

Figure 5 shows the case where initial z, is 46m. F

— 475 —



T —

e 1.5 20 2.5 3.0 35 4.0 4.5

8,0
o]
o
o

Time(sec)

Fig.5 Optimal solution with a large initial dis-
tance (ball game, without velocity control)
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Fig-6 A ball game with a goal

takes negative maximum a, first, then at 0.5s, takes the
positive maximum q,, and at about 2s, again changes its
sign to the negative maximum. The first behavior is con-
sidered as the action to obtain an "optimal initial geom-
etry” preceding to the following action which is the same
kind as that of Fig.3,

Ball Game Application (With a Goal, Without
Velocity Control)

Next we treatl the case shown in Fig.6 where a goal
G to the evader exist, and F tries to maximize the dis-
tance r between P at the time {; when E reaches to G.
Mathematically the problem is defind by substituting next
stopping condition (18), instead of (14).

Qz(z,—x,)7+(y,——y,)7-5=0 (]8)

where ¢ is a siall enough value. Figures 7 and 8 show the
two kinds of local optimal solutions where G is iacated at
(10.5m,1m), that is, lm upwards (+y direction) from the
z axis. The corresponding r; values are 4.61m and 2.84m
respectivery, therefore the former is globally optimal. That
is, when the goal is located at rightward to E, E shouid
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Fig.7 Optimal solution No.1 with a goal
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Fig.8 Optimal solution No.2 with a goal

first turn to lelt, and al an appropriate time, reverse the
directlion to rightward to reach the goal.

Ball Game Application (Without a Goal, With
Velocity Control)

When P’s velocity is low, F tries to avoid P with
a high speed, while P’s velocity is high and its turn ra-
dius is large, E tries to reduce the velocity and avoids
P with a small turn radius. These are basic tactics in a
pursuil-evasion game, therefore the velocity control plays
an important roll in the game. Figures 9 and 10 show the
optimal solutions with velocity control, which are corre-
sponding to without velocity control cases of Figs 3 and
4. Constraint parameters for the evaders velocily are se-
lected as ayemay = 8M/$2, Vemin = 2m/s, and Vemay = 8m/s.
Other parameters are same as that of without velocity con-

trol cases. In Fig.9, I reduces its velocity and turns right
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Fig.9 Optimal solution No.1 (ball game,
with velocity control)
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Fig.10 Optimal solution No.2 (ball game,
with velocity control)
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Fig.11 Optimal solution No.1 (air-combat,
without velocity control)

to avoid P, while in Fig.10, E' first reduces its velocity for
a quick turn and after 180° turns, it increases the veloc-
ity to dfaw away from P. The 7, values in Figs 9 and
10 are 4.92m and 13.49m, which are larger than that of
corresponding without velocity control cases, 4.13m and
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Fig.12 Optimal solution No.2 (air-combat,
without velocity control, with an initial

heading error)
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Fig.13 Optimal solution with a large initial
distance (air-combat, without velocity

control)

12.16m in Figs 3 and 4, thercfore the effect of velocity

control is clearly shown.

Air-Combat Application (Two-Dimensional)

The same mathematical process is applied to an air-
combat problem of a tactical missile and an aircraft, just
by accomodating the parameter values of two players to
that of a missile (/?) and an aircraflt (£). In the problem,
parameter values of v, = 700m/s, v, = 300m/s?, Gpemoz =
30011/52, Qumar = 90M/S?, Qremar = 14m/[s? 1, = 0.A4s,
and N, = 4 are selected. Figure 11 shows the case without
velocity control, and initial distance z, = 1800m. This
solution corresponds to that of 1ig.3, the resulting r; is
20.6m. The solution corresponds to Iig.4 does nol appear

because in this case v, is {ar larger than v., therelore that
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Fig.14 Optimal solution with a large initial dis-
tance (air-combat, with velocity control)

Evader

Pursuer

Enlarged figure

of evader
o
om
—
o
R
\—<
£
8
b0 0.5 10 s 2.0 2.5 3.0
o
X
oy
v
v
o
N
©
Yo 05 10 1s 2.0 2’5 3.0
Time(sec)

Fig.15 Optimal solution ex.1 in a three-dimensional

air-combat game (vertical-S type)

kind of avoidance is impossible. However, when a large
initial missile heading error exists, the kind of solution
appears. For example, Fig.12 shows the case where initial
z, and 1, are 2000m and 150°, respectivery. The aircralt
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Fig.18 Optimal solution ex.2 in a three-dimensional

air-combat game (horizontal-S type)

(F) takes the positive maximum a, throughout the history.
The resulting r; is 30.0m in the case. Figure 13 shows the
case where initial z, is 4500m. The same a, paltern as
Fig.5 appears, and the resulling r; is 30.3m. Figure 14
shows the case with velocity control, which corresponds to
the without case Fig.13. From these figures the effect is not
clearly shown, but the resulting r; 15 31.9m, which shows

a slight improvement by employing the velocity contral.
Air-Combat Application (Three-Dimensional)

Although it is not the purpose of this paper to dis-
cuss about the three-dimensional air-combat game, but
two examples are shown to exhibit the usefulness of the
above mentioned two-dimensional analysis. In the three-
dimensional studies, the aircrafl lateral acceleration a, and
bank angle ¢ are used as control variables. For a posi-
tive a. value, ¢ = 0°, 90°, 180°, and 270° mean upward,
rightward, downward, and leftward lateral accelerations,
respectively. The equations of motion are abreviated here.
The performance index is miss distance, which is the slant
range r; al the closest point of aproach between the missile
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and aircraft. Figures 15 and 16 show typical two optimal
solutions. In Fig.15, E changes ¢ from 180° to 0° al 0.2s
to take the maximum upward acceleration, then changes
from 0° to 180° at 1.7s to take the maximwn downward ac-
celeration. The feature is the same as that of Iig.5, where
the aircraft. {F) maneuver is taken in a vertical plane,
therefore called as a vertical-S. In the same manner, in
Fig.16, the maneuver is taken in a horizontal plane, where
the aircrafl changes ¢ from 90° to 270°. This maneuver
is called as a horizontal-S. The maneuver corresponding
to Fig.12 is also obtained in the three-dimensional study,
(the fignre is abreviated here) which is called as a split-S
or a sustained maximum g turn. As these maneuvers ab-
tained from a three-dimensional pursuit-evasion study is
essentially two-dimensional, therefore we may consider the
preceding two-dimensional study results are applicable to
three-dimensional cases (at least under some conditions).

Conclusions

A pursuit-evasion game between two players in a two-
dimensional plane is studied and applied to a ball game
and an air-combat game. In the problem, the pursner em-
ploy proportional navigation to chase the evader, while
the evader’s optimal control is obtained by solving a non-
linear two-point boundary value problem. Generally, two
kinds of local optimal solutions are obtained. In one solu-
tion, the evader first takes a maxinum positive or negative
lateral acceleration, then reverses its sign a short time be-
fore interception. In another solution, the evader takes
a constant maximum lateral acceleration thronghout the
game. The advantage of the evader’s velocity control is
also shown. In the game where a goal exists to the evader,
the evader first should take a laleral acceleration to the
opposite side of the goal, then reverse its acccleration to
reach the goal.

The same study is aplied to an air-conibat game of a
missile and an aircraft, the results show almost the same
feature as that of the ball game. However, in Lhis game,
as the pursuer’s velocity is far larger than evadet’s, the
second type solution (constant maximum lateral accelera-
tion) only appear when an initial heading error exists. Two
examples of the three-dimensional study are also shown,
which reduced to maneuvers in a plane called as a vertical-
S and a horizontal-S. The second type solution is also ol-
tained in a three-dimensional study, which is called as a
split-S or a sustained maximum g turn. Therefore, the
approach employed in this paper is uscful for analyzing
both ball gaines and air-combat games, and the resulis is
applicable to a three-dimensional air-combat game.

Acknowledgment

T'he authors are indebted to Dr. S. Uehara, Divec-
tor Genéral for Rescarch and Development of the Japan
Defense Agency for giving us useful advice and discussing

the contents of this paper.

References

[1]Tsaacs, R., Differential Garnes, Wiley, New York, 1965,

2] Merz, A. W. | "The Homicidal Chauffeur”, AIAA Jour-
nal, Vol. 12, No. 3, 1974, pp. 259-260.

[3] Bryson A. E. Jr. |, and Denham, W. F. | "A Steepest
Ascent Method for Solving Optimum Programing Prob-
lems”, Journal of Applied Mechanics, Vol. 29, June
1962, pp. 247-257.

[ Bryson A. B. Jr. | and Hlo, Y. C., Applicd Optimal
Control, Ginn-Blaisdell, Waltham, MA, 1969, pp. 221-
228.

— 479 —



