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Abstract

In this paper, we propose a new design procedure of the
Robust Model Matching (RMM) using the Normalized
Left Coprime Factorization (NLCF) approach. The
RMM aims at reducing the sensitivity of a given con-
trol system, but standard design procedures are not for
robust stability., Therefore we try applying the robust
stability condition based on NLCF to RMM procedure.
We first formulate the RMM using the robust stability
coudition of NLCT approach, then we propose the new
procedure of the RMM. The poiut is that the condi-
tion includes the measure of sensitivity of the RMM. In
the proposed procedure, a cost function is determined
through the condition and solved by Ho,control tech-
nique. Finally we show a design example and check the
performance.

1. Introduction

The importance of the robust control is well-
known. That is why we can not describe a real
plant by formulas completely, so it is difficult for
the controller to have the same performances for
the real plant as’it does for the formulas plant.
The Hgcontrol, which evaluates performances of
control systems by Heonorm, has been applied to
robust: control, one of the reasons is that robust
stability conditions are derived by using Honorm.
Nowadays several solutions of the Hycontrol have
been developed and solving Heocontrol problenis
has becn getting easier {1] (2] [3).

On the other hand, the Robust Model Match-
ing (RMM) has been proposed [4]. The RMM
aims at reducing the sensitivity of a given control
system by appending a compceunsator, so-called ro-
bust compensator, without changing refcrence re-
sponses. The effect of the RMM has been con-
firmed by laboratory experiments and industrial
applications [5] [6] [7]. As for the robust stabil-

ity of the RMM, Zhong et ol treated the problem
in the case of minimum phase SISO plants and
the authors showed heuristic design procedures of
the robust compensator for robust stability [8] {9].

Towever, the robust stabilization of the RMM for

unstructured uncertainties has not been consid-
ered.

In this paper, we propose a new design proce-
dure of the robust compensator using the robust
stability condition of the NLCF approach. We first
formulate the RMM method using NLCF approach
and propose the new procedure of the RMM. The
point is that the robust stability condition includes
the measure of the sensitivity of the RMM as woll.
Therefore in designing a robust compensator it is
possible to evaluate both the robust stability and
the sensitivity simultaneously. To do that, we de-
termine a cost function through the condition and
solve it via Hycontrol techniques [1]. The pro-
posed procedure is a kind of Hcontrol from the
point of view of the RMM framework. In the last
part of this paper, we show a design example and
check the performance of the control system.

2. Preliminaries

2.1 RMM

First of all, we review the RMM.

The RMM attaches an additional compensator
to an existing control system, which is called the
robust compensator. One of the characterisiics of
the robust compensator is that modes of the robust
compensator have no councction with thie refer-
ence responses if the plant is nominal. This mean
that the robust compensator does not change feed-
forward property, but changes feedback property.
Therefore we can design the robust compensator

— 360 —



independently from the reference responses. Note
that, for convenience, we do not describe the ref-
erence inputs in the following explanation, even if
controllers have reference inputs.
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Fig. 1: The equivalent disturbances

The mechanism which the RMM reduces the
sensitivities with is concerned with equivalent dis-
turbances. Fig.1-(a) represents a control system,
where P denotes a nominal plant, X denotes a con-
troller, the vector v € R™ denotes the controller
output and the vector y* € R! denotes the plant
output. In Fig.1-(b), the plant has changed from
P to P and has put a disturbance ¢ into P, and
also the vector v and y™ has changed to @ and g,
respectively. In Fig.1-(c), we introduce external
inputs e, and e”. Note that we use P instead of
P and that the box Gs in Fig.1-(c) is equal to the
‘box G in Fig.1-(b), when we determine e, and e*
as follows,

Cy=UuU—U {1)
=9 -y (2)

We call them the general equivalent disturbance.

If we can reject them from the system in Fig.1-(c),
it must have enough low sensitivity. That is the
concept of the RMM.

In the standard procedure of the RMM, the con-
troller K is constructed as Fig.2. Here C denotes
an existing controller and Rcomp denotes a robust
compensator designed in the RMM procedure.

= l g
R %d— I  l<

Rcomp

Fig. 2: Controller I{ via the standard construction
of the RMM

The following list shows the standard design pro-
cedure of the robust compensator.

1. Calculate Pg,., which is a transfer function
matrix of P from d to y*, as follows (in this
paper we write a transfer matrix like this).

Assume M and N are coprime polynomials
such that
Py =M7'N. (3)

Then the [P, -, Pesy-] has the factorization
[Pc,.y‘,Pe'y‘]z Mﬂl[ﬁﬂl\;f]. (4)

Here [N, M] is supposed to be row proper.
The vector d € R is defined as the external
input of M~! and called fundamental cquiva-
lent disturbance, which is illustrated in Fig.3.
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Fig. 3: The fundamental equivalent disturbance
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The box G3 in Fig.3 is equal to the box G in
Fig.1-(c), if the following equation is satisfied:

d= [N,Ml[ M } (5)

(4

Needless to say, Pg. = M~1.

2. Calculate T which estimates the d from g =
[@”, 5T|7, as follows.
By Fig.1-(c), (4), (5) we have

'!7. = Puy"["+13uy‘cu+e* (6)
= Pyyet+ M1 (7)

Hence d is estimated by
d=[-N, Mlg. (8)
Then I is represented as

I=[-N, M]. (9)

3. Minimize [Ty, + Thy R|f for R.

Here, || - || means appropriate norm; T' denotes
the control system consisting P and C; I of
C is selected by similar procedure to d of P; y
is the controlled values which consists of the
first mth elements of y™.

4. Construct the robust compensator Rcomp
from F, R, T.

The transfer function matrix F' has low pass
filter property and is determined such that
Chy - F- R T is proper.

2.2 Robust stability on the NLCF ap-
proach

The normalized left coprime factorization of Pyy.
is .
Py =M"IN (10)

where N and M are coprime and stable proper
transfer function matrices, and satisfy

NN*+MM =I YsejR. (11)

The factorization [N, M] is unique to within left
multiplication by a unitary matrix.

The perturbation class associated with NLCF
uncertainty is defined as

Do, = (A =[Oy, Ayl & € RHI),
1Al < ¢}.(12)

The perturbed plant is denoted by
Puye = (M +8a) (N +Ax)  (13)

and illustlated in Fig.4. N
The controller I{ stabilizes Py for all A € Dg¢,,
if and only if

(a) K stabilize Pyy-

) n[ K(I = Py K)"' M~ ]” v S

(I =Py K) 1M~}

The largest number of € (= €40 i given by
Cmazr = (1 - ”[]\',vM}”H)I/‘2 (15)

which is called the maximum stability margin.
Here || - ||y denotes the Hankel norm.

Y

+ -

Fig. 4: The NLCF perturbation

3. RMM Using NLCF Ap-

proach

The block diagram in the box G4 in Fig.4 is in-
terpreted such that the signal associated with the
NLCF uncertainty is put into the nominal plant.
We notice that the interpretation is analogous to
the idea of the equivalent disturbance d in the box
G3 in Fig.3. From the point of vicw of that notion,
we propose another equivalent disturbance and re-
formulate the RMM to apply the NLCF approach.
Then we propose a new procedure of the RMM
and clarify the class of the controller via this pro-
cedure.
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3.1 - Re-formulation about the RMM

We commence to define another equivalent distur-
bauce d from Fig.4 as

{lE[AN,-—AM]{;; } (].G)

The relation between d and d is concerned with
the relation between [N, M] and [N, M], because

7" = Py + M7 (17)
=P+ M7l (18)

hence B
MYd=M1d. (19)

The left coprime factors ol a polynomial matrix
can be transformed to the left coprime factors of a
stable proper rational matrix by left multiplication
of a stable proper rational diagonal matrix. The
left coprime factors of the stable proper rational
matrix can be normalized by left multiplication of
a unimodular matrix. Therefore there exists such
a matrix H of the left multiplication as

[N,M] = H [N, M]. (20)
By (19),(20),

d=Hd (21)

Similarly to (8), the following equation is derived:
d=[-N,Mlg by (18) (22)

= H[-N, Mg by (20) (23)

=HIg by (9). (24)

Therefore d is estimated by putting H in the stan-
dard Rcomp.

L
u c y
h g
d
Q A
Rcomp

Fig. 5: Controller K via new construction of the
RMM

Now, we re-construct the Reomp Ly using d in
Fig.5. Here; A is equal to H - T and @ is a stable
proper rational function matrix. We don’t need F
in this construction because A and @ arc proper.
We chicose @ instead of R to achieve the RMM
design.

3.2 Cost function

The objective of this paper is to apply the robust
stability condition (14) to the RMM. Note that
since the signal d is input of M~!, the transfer
function matrix in (14) is of the whole control sys-
tem from d to g. Though the transfer function
matrix of a whole control system from a equivalent.
disturbance vector to a controlled value vector is
the measure of the sensitivity on the RMM, it is
included by the matrix in (14). We consider that
by taking the matrix as the cost function of the
RMM, it is possible to cvaluate both the robust
stability and low sensitivity simultaneously.

Suppose that T denotes the control system con-
sisting of P> and C, that is to say, in the case K
consists of C. The cost function for the RMM is
denoted as

G= “W [ng + Tth]”w (25)
where
I, O 0
W=1]10 w 0 (26)
0 0 I/—m
w : stable proper-rational
matrix

Now, Tyg+ T, denotes the transfer function ma-
trix from d to g of the whole control system con-
sisting of PP, C and Rcomp, that is to say, in the
case J consists of C, A and Q. The matrix W
weights y in g.

Beeausse both Ty, and T),, are stable, (25) has
the same formula as the model matching problem
in {1]. Suppose « and v is as follows:

a=infG (27)
¥ < a. (28)

From tlie solutions of the modcl matching problem,
we can obtain @ satisfying

”W [T{Ig + Tth]”oo S - (29)

3.3 The class of controllers
The Plant P, has a right coprime factorization
Py =NM™! (30)

where N € R™™ and M € R"*™ are proper and
stable. Then there exist X and Y satisfying

XN+YM=1I (31)
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where X € R™* and Y € R™ ™ are proper and
stable.

An existing controller C in Fig.5 is paramectrized
by the formula

Cpu=~ —QN)"X+QM).  (32)

Here the parameter Q is proper and stable, and
(32) is a left coprime factorization as well. Suppose
I is the input vector of (Y — QN)~!, the whole
countroller J{ consisting C, A and @ is represcuted
by the same formula as (32):

Kyow=~(Y=(Q-Q)N)"H(X+(Q-Q)M). (33)

Therefore we conclude that the class of all the con-
trollers K via the RMM in I'ig.5 is equal to thic set
of all proper real-rational’s stabilizing Py .

Note that the formula (33) implies that the or-
der of K in the case of realizing C and Rcomp
scparately is higher than in the case of realizing
them simultaneously by the order of A.

3.4 Summary of the procedure

We sunumnarize the proposed procedure of the
RMM.

Step 1 Calculate NLCF [N, M] of Pyy-.
Step 2 Set A as [-N, M].
Step 3 Obtain Q satisfying (29).

Step 4 Construct Reomp separately from C, or con-
struct Rcomp and C simultancously like (33).

4. Example

We show a design example using the proposed pro-
cedure. -
. We use the plant in [10]:

s(s —1)? )

(s(s +1)?2
P (s+1) (s+D(s=-1)
uyr =
s(s+1)(s—1)
where y = y”, that is, we sclect the controlled value
as all the measured values.
Suppose r represents a reference input vector.
The existing controller is as follows:
( 2(s — 13)  2(—s2 425+ 15)
Co —2(3s+7) 2(s + 3)?
i (52 + 5+ 2)
(—52 + 245425 2(s% — 105 — 15) )
Cyou =

(34)

652 +19s+13 —2(35° 4+ 105+ 9)
24542

(3"

.(36)

Then we have the transfer function matrix T},
consisting of I and C:

1
;0
Toy=| *F 9 (37)
s+ 2

and the characteristic polynomial D(s) of T™:
D(s)=(s+1)(s+2)(s+3)(s2+s5+2). (38)

In the following, we get the controller K in Fig.5
via the above RMM procedure.
In “Step 17, we get

—0.146(s + 1.70)(s — 1.35)

0.577(s — 1.75)(s% + 1.175 + 0.738)
0.854(s% + 1.51s + 1.05)

(s-+1.84)(s? +1.345 + 0.857)

0.577(s + 1.17)(s + 1)(s — 0.747)
—0.146(s 4+ 4.21)(s + 1)

( 0.577(s + 1.98)(s? + 1.44s + 1.54)

—0.0138s(s -+ 90.5)
s(s+1.58)(s + 0.178) (40)

M=
(s + 1.835)(s? + 1.340s + 0.8570)

In “Step 2", we set A by (39), (40) immediately.
In “Step 37, we get the sub-optimal (Js. Here we
set the weighting matrix W ag

1 0 0 0O
0 1 0 0

W= 0 0 w O (41)
00 0 w

Here for convenient, suppose w is a positive num-
ber, We take several numbers as w and obtain Qs
for each w and appropriate v respectively:

In “Step 4, we construct K such that we realize
Reomp, add it to C, and reduce the order of K by
the order of A.

We show some results in Table 1, where T' de-
notes the control systcin consisting of P and C;
rT" denotes the control system consisting of P, C
and Reomp; ||Tyglleo and [|nTygllee are the mea-
sures of the robust stability; || Tyylleo and || pTuyll
are the measures of the sensitivity. From Table 1,
we recognize the values of || iTygllee and || r7uyllo0
are smaller than || Tyglleo and |[Taylleo respectively.
~Table 1 shows that the larger the value of w is,
the smaller the value of || aTuylloo is. But when the
value of w is large enough, enlarging w does not
change || pTuglloo and || g7y lloe 80 much.

We show the some step responses of 4 to 7 when
the pole —1 of the plant becomes -2 in Fig.6,
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”Trlg”oo “Trly”oo
10.61 2.252

w o 2 ”Rng“oo “Rle”oo
1 2.225 | 2.230 2.229 1.902
2 3.314 | 3.320 2.780 1.475
3 4.125 | 4.130 3.428 1.266
4 4.859 | 4.860 3.965 1.142
5 5.633 | 5.640 4.374 1.077
10 10.23 | 10.24 5.214 1.011
50 50.04 | 50.05 5.632 1.002
100 | 100.02 | 101.0 5.645 1.002

Table 1: Results of design

wliere “nominal” denotes the plant is nominal,
“w=1" and “w=10" denote the controller is the
K where w = 1 and w = 10 respectively and
“only C” denotes the controller consists of only C.
Except pTry(2,1), “w=1" is closer to “nominal”
than “only C” and “w=10" is closer than “
It is the same order as the values of ||Tyylleo and
T aylloos. It implys || nTuyllec has the property
that it indicates the sensitivity of the control sys-
tem.

w=1".

I 1 .
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Fig. 6: Step respunses in the pole —1 of P becomes
-2

5. Conclusion

We proposed the design procedure of the RMM
which aims at achieving both the robust stability
and the sensitivity. We made use of the robust
stability of the NLCF approach to do that. And we
showed the example and the effect of the proposed
procedure.

Although we didn’t mention about the steady-
state property in this paper, we intend to achicve
it in the near future.
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