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ABSTRACT: Optimal control theories based on the
maximum principles have been evolved and applied to
distributed parameter systems (DPSs) represented by
partial differential equations (PDEs) and integral
equations (IEs). This paper intends to show that an
optimal control of a tubular reactor described by a one-
dimensional partial differential equation was obtained
using the distributed parameter control method for
parabolic PDEs". In developing an algorithm which
implements the calculation, the method of lines (MOL)
was adopted through using a package called the DSS/2%.
For the tubular reactor system chosen for this paper, the
optimal control method based on PDEs with the
numerical MOL showed to be more efficient than the one

based on 1Es.

INTRODUCTION

Mathematical models for dynamic behavior of
processes whose parameters are distributed in space and
changing in time are belonged to DPSs. For about 30
years, optimal control studies for the DPSs have
concentrated on developing more proper theories and
searching for the applications.

Wang" studied a general optimal control theory based
on both of parabolic PDEs and IEs including space-time

domain, time domain and boundary. Wang et al.”

presented the optimal control of nonlinear 1Es and Chang
and Lee™ presented the optimal control of hyperbolic

systems.
Based on the theory of [3], a tubular reactor model

represented by a one-dimensional PDE had been studied
as one of nonlinear distributed parameter optimal control
problems ¥,

In [5], the original PDE was changed into the
corresponding IE by means of the Green's function
method and the maximum principie for the type of IEs as
derived in {1] and {3] was applied to obtain the optimal
control.

In this research, the original nonlinear PDE was used
without any change and the maximum principle as

derived in [1] was applied to obtain the optimal control.

PROBLEM STATEMENT
One of the popular tubular reactor models with axial
dispersion was chosen from the literature. Since our
object is to find that the optimal control theory works for
nonlinear DPSs, only the mass balance was treated as the
state equation and the temperature variable was chosen

as the control variable.

The state equation is:
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Initial Condition: C(x,0)=0 2)
- aC
Boundary Conditions : at x =0, P PeC 3
ax=1, 2€ =0 @
x

The control variable T(x,t) is going to be chosen to
minimize the cost function:

Cost= 411, (Mot “Tdx,07 dx de )

From the theory, the Hamiltonian function for this

system is derived as:

H =.% (T(x,0) -Td(x,0)? +

19 C dC
R{Peal x+Da(1C)<:xp( +I) 6)
3
The costate equation is defined as:
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Boundary Conditions : at x =0, TR = (8)
=1 9R_.
at x=1, e PeR (9)
Final Condition: R(x,t)=0 10
The derivative of the Hamiltonian becomes:
= OH
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The necessary condition for maximizing the Hamiltonian

is
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NUMERICAL METHOD
An algorithm to find optimal T(x,1) which satisfies
(12) is as follows:

L Atk =0, guess T(x,) for 0S t S t,and 0 x < 1.

2. For 05(.<.t, :
a) get C(x,t) by solving equations (1) - (4) numerically
b) guess R(x,0)
c) get R(x,t) by solving equations (7) - (9) numerically.
d) Check if the calculated R(x, t)) satisfies the final
condition (10):
ifR(x,1) =0, goto 3;
if R(x, t) # 0, R™(x,0) = .1*R"(x,0)
and go to c).
3. Get HT(x,t) from (11) with known C(x,t), R(x,t)
and T(x,t).

Calculate the Cost using the equation (5).
4. Check if the necessary condition (12) satisfies:

if HT=0 goto 5.
if HT#0, T (x,t) = T*(x,t) + eps * HT(x,1)
and go to 2.
5. Optimal T(x,t) is obtained. Print the results and stop.
For the step (2), we used Schiesser's DS$/2 package®
which was developed using the MOL. It was found to be
easy in implementing the system using the available

numerical software.

RESULTS AND DISCUSSION

Figs 1 - 5 summarize the results visually. These
results show that the optimal control theory, for the
nonlinear parabolic PDEs is quite useful as well as the
theory for the nonlinear IEs in the previous studies!' 5!,

Fig. | shows that we could get the minimal cost in
only one iteration with an appropriate iteration weighting
(eps). The value of eps seems not to be greater than 1
because Fig. 2 shows that HT could be oscillatory with
too much weightings. With a small eps, the convergence
was slower than the large one as expected. In this study,
without using various values of eps at each iteration or
time and steps, an excellent convergence was possible.
The appropriate value of eps may be dependent upon

systems.
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Figs 3 - 5 illustrate the dynamic behaviors of the state
variable, the control variable and the costate variable,
respectively . We could find the final value problem of
the costate equation described with the equations (7) -

(10) could be solved with reasonable guesses in the

numerical step 2-b.

From this particular experience we could find that the
optimal control solution for PDEs of DPSs is much easier
to obtain than the one for IEs for some systems. Also
using PDE:s directly has some advantage over using IEs.
First, it is not always easy to convert the PDEs to the IEs
by means of the Green's method. Second, programming
with PDEs is much simpler and easy to understand,
especially if a differential equation simulator is available.
Third, in general the IEs consume larger computing time
due to the matrix inversion and the eigenvalues involved.

We found also that the MOL could be useful for the
optimal control of DPSs, especially with a infinite

boundary condition at the reactor outlet.
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NOMENCLATURE
C : conversion of reactant A
Da : Damkohler number
cp§ : weighting on HT in iteration
H : Hamiltonian

oH

HT : derivative of the H, ot

k : iteration counter

Pe : axial Peciet number

r : dimensionless activation energy
R : costate variable

t: dimensionless time variable

t; : final time
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T : temperature (control)
Td : desired temperature

x : dimensionless space variable
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Fig. 5 Costate profiles
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