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Abstract

The aim of the present paper is to show the ef-
fectiveness of Genetic Algorithm for data classifi-
cation problems in which the classification criteria
are not the FEuclidean distance. In particular, in
order to improve a search performance of Genetic
Algorithm, we introduce a concept of the degree
of population diversity, and propose construction
of genetic operators and the method of calculation
for the fitness of an individual using the degree of
population diversity. Then, we investigate their
performances through numerical simulations.

1. Introduction

Genetic Algorithm (GA) is known as a most effec-
tive method to solve combinatorial optimization
problems by simulating the process of natural evo-
lution and natural genetics, and many theoretical
studies and its applications have been considered
1)~4). In this paper, the procedure of GA is ap-
plied to cluster analysis.

Cluster analysis or clustering is a basic tech-
nique in the field of data analysis. Cluster analy-
sis may be used to reveal categorical structures
in the data. It is applied to a variety of sci-
entific data classification problems such as those
in life sciences, medicine, engineering and so on.
Then, many clustering methods are already pro-
posed ®)~®). Most of these clustering methods deal
with the clustering in which the classification crit-
era are the Euclidean distance, for example, its
typical method is MacQueen’s k-1means method
8). Applications of GA to the clustering based
on the Euclidean distance have already been re-
ported 911 However, the clustering not based
on the Euclidean distance have a larger number of
applications when compared with the clustering

based on the Euclidean distance. So far, in the
case of the non-Euclidean distance case, the MST
(Minimum Spanning Tree) method have been ap-
plied to the clustering, but the MST method has
a problem, i.e., sensitivity for an observation noise
of data. Thus, a practically useful method for
the non-Euclidean distance has not been pro-
posed yet. This paper intends an investigation of
the effectiveness of a combinatorial optimization

‘method using GA for clustering, and is concerned

especially with the clustering not based on the Eu-
clidean distance.

In a traditional GA, its dispersion of the search
performance will be large, depending on the opera-
tors using random numbers or the control parame-
ters. In this paper, for the purpose of reducing the
dispersion of the search performance, a concept of
the degree of population diversity is introduced as
an index for an internal state of the whole popula-
tion, and we use this index for control parameters
of the genetic operators such as crossover, muta-
tion and selection and the method of calculation
for the fitness of an individual.

2. Construction of GA for clustering
2.1  Outline of GA

For the purpose of solving a given problems, a GA
requires a feasible solution for the problem to be
coded as a finite length strings using some num-
bers or alphabets. This operation is called genetic
coding, and this string is called individual. The
position of the string is called locus. The variable
at a locus is called gene, and its value allele. A
collection of a member of individuals is used for
solving problems. This collection is called a popu-
lation. The fitness of each individual is evaluated
for a given problem, and individuals of the popu-
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lation are gradually improved by using the fitness
and genetic operators such as crossover, mutation
and selection.

A general procedure of GA consists of the fol-
lowing steps:

1. Initialize the genes of each individual in the
population P(t = 0).

2. Generate P(t + 1) from P(t) as follows:
evaluate fitness of each individual in P(t);
select individuals from P(t) using fitness;
recombine them using genetic operators;

3. If time is up, stop and return the best indi-
vidval; if not, set t =t + 1 and go to 2.

An iteration is called a generation. The index t
indicates the number of generations.

2.2 Clustering

Clustering is a tool for exploring the structure of
the data that does not require the assumptions
common to most statistical methods. It is called
unsupervised learning in the literture of pattern
recognition and artificial intelligence ©).

To begin with, we will introduce several sym-
bols. A set of objects which should be divided, is
denoted by A = {a1,az2,- -, e,}, and the elements
aj,az, -, a, are called “objects”, or siinply called
“data”. The set A should be divided into clusters
Ci (i=1,.--,K). Clusters mean a family of dis-
Joint subsets whose union coincides with the data
set. (UG U---UCk=Aand C;NC; =0)

Clustering requires a classification criterion that
means an index of alikeness or association between
pairs of data. In this paper, it is called dissimi-
lority. The dissimilarity between a; and a; data
is denoted d(a;, a;) and must satisfy the following
three properties:

1) d(aiyae;) 2 0
2) d{ai,aj) = 0« i =3 (1)
3) d(ai,a;) = d(aj,ay)

The degree of relation between a; and a; be-
comes small when the dissimilarity d(e;,q;) is
large. Thus, the aim of the clustering is to sort
the data into clusters such that the dissimilarity
is low among members of the same cluster and
high between members of different clusters.

In particular, the clustering problem leads to
the minimization of a function D%):

K 2)
sko= = >y d(ai,a;)
a; €Cy a,€Cy
where n; denote the number of data which are
included in the cluster C;. The parameter K in-
dicates the number of clusters.

When the GA is applied to the clustering prob-
lem, we have to consider three issues: (1) genetic
coding for the individual; (2) construction of ge-
netic operators ( crossover, mutation, selection );
(3) calculation for the fitness of individual.

2.3 Genetic coding for the individual

Suppose that a clustering problem have to divide
the data a; (i=1,--+,n) into K (K 2 2) clusters.
Then, the genes z; (i = 1,---,n) of one individual
X are denoted as integers in the interval [1, K].
For example, n = 8, K = 3, individual X which
is expressed as below means that { a3, a4, ag } be-
long to the first cluster C; , { a2, a5} belong to
the second cluster C; and { ay, ag, a7 } belong to
the third cluster C3, respectively.

data: ay a2 a3 a4 a5 ag a7 ag
X : 3 2 1 1 2 3 3 1

That is, these numbers of the individual corre-
spond to the cluster numbers of the data.

3. Degree of population diversity
3.1 Introduction of the degree of diversity

In a GA, operations using the fitness and genetic
operators are carried out for the individuals of
the population, and the individuals are gradually
improved. We observe that with the progress of
the generations, a locus is concentrating a spe-
cific allele as shown in Fig.1. In this case, each
allele is equivalent to the cluster number of the
data. Then, the population finally consists of in-
dividulals having the same arrangement of allele.
Accordingly, the population diversity will be de-
creased.

Observing this, we note the possibility of quan-
tif’ying the degree of population diversity. If we
adequately define the degree of population diver-
sity as an index for an internal state of the whole
population, we can use this index for control pa-
rameters of the genetic operators for developing a
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method of calculation for the fitness of an individ-
ual in order to obtain better individuals.

(X1 2 3 2 1 2 3 2]
X212 313 23 21
233 112

P(0) : X312 1

X, (13113321

| after ¢t generations

Xy |13)[1] 2 (1]|2] 3 2 |1
Xo ||3(11] 1 j1||2] 1 2 |1
Py : | Xs|[3]||7] 2 (1]j2] 2 3|1
X 3]() 3 [1]2] 3 12

Fig.1  An illustration of the decrease of diversity

3.2 Calculation for the degree of diversity

Suppose that a population P(t) consist of p in-
dividuals that have n length string. Then, the
degree of population diversity V(t) and the degree

of diversity for each locus vg (k = 1,---,n) are
defined as follows:
X1{z11 T12 ¢ ZTia
Xo|xoy =z -+ xT9n
P(t) :
Xp | ZTp1 Tp2 -0 Tpn
vy v2 o Un
1 n
V() = =) 3)
n
k=1
(3
vy = i (k=1,---,n) (4)
7max
A
= k
,where T = 225'1
i=1j5=1
6“ - 1 if mik#xjk
! 0 otherwise

In general, these values are near 1 in the initial
population P(0). They are decreasing as the gen-
eration proceeds and when the whole population
is with the same individuals, these valuses will be
0. Next, we propose the construction of genetic
operators and the method of calculation for the
fitness which are based on the degree of popula-
tion diversity.

3.3 Crossover

We consider the formation of mask pattern at uni-
form crossover using the degree of diversity for
each locus.

A traditional uniform crossover has a problem
which is inclined to break a good connection at the
locus. The reason for this is that the operations
at uniform corssover depends on the mask pattern
which consists of the bit value with an equal prob-
ability. The desirable allele for a given problem
concentrate on the loct are with the low degree
of diversity, and we generate the mask pattern by
connecting loci with the low degrees of diversity
regarded as one locus.

Namely, when the degree of diversity at the lo-
cus between v and vy, satisfy the following in-
equality:

VkyVE41y "ty Vk4i < Pc (5)

the elements of the mask pattern between kth and
(k + i)th are regarded as one element. The pa-
rameter p. is a positive real number indicating a
threshold for connecting loci. Fig.2 indicates an
example of uniform crossover using the proposed
method.

Parent lml_]—i[IIZ 2 Child I@]ﬂi[ﬂjﬁl—i‘l
2R 2LIL2)2)
Parent zEHILj 21 g 2 2 enia[1]1]1[2]2[2]2]2]

C

Mask Pattern

:l i
‘The decrease of H-
the degrec of diversity

Fig.2 An example of uniform crossover using
the proposed method

3.4 Mutation

A traditional mutation is carried out randomly for
the whole population according to the mutation
rate determined beforehand. The state of loci with
the low degree of diversity are frequently involved
in the local minimum for a given problem, and we
consider the mutation at locus units for escaping
from a local minimum.

The mutation rate p*, of the kth locus is defined
as follows:

pﬁl = Pm X (10— Ui +(Y) (O <K 1) (G)

where vy denotes the degree of diversity on the kth
locus and p,, indicates the initial mutation rate.
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In this mutation, The mutation rate at a locus
becomes large when the degree of diversity at the
locus is small.

3.5 Selection

We consider the selection which limits the num-
ber of individuals having the same arrangement of
allele.

First, the maximum number of the same ar-
rangement is defined by an integral number N.
Then, choose the individuals which are pre-
served to the next generation using roulette wheel
method and elite method ¥). With the variation
of the degree of diversity fur the population, the
number of the individuals with the same arrange-
ment is defined as follow:

int(N-x V(t)) +1 (N

The number of the same arrangement becomes
small when the degree of populaton diversity V (t)
is small.

3.6 Calculation for the fitness

The fitness f; of individual X; is defined by using
the degree of population diversity V(t) and the
evaluation values D; which is defined for X; using
Eq.(2) as follows:

fi = Faax— £ x(0;-1)

—n(1=V(1)))
(8)

where O; denotes the order for the evaluation value
of the individual X; in the population (1 £ O; £
p). Namely, X; with the highest fitness has O; =
1, X; with the second highest fitness has O; =
2, and so on. The parameter p denotes the size

F, = _“‘(Fmax"Fmin

of population. The parameters Fiuag, Fin denote
the maximum value and the minimum value with
the fitness range, respectively. The parameter 7
indicates a positive real number which determines
the minimum fitness fuin, and satisfy 0 < 7 <
Fma.x - Fmin-

In this calculation for the fitness, the difference
hetween the maximum fitness value and the mini-
mum fitness value becomes small when the degree
of population diversity V(¢) is small. That is, as
the degree of population diversity is smaller, it is
easier to combine an individual of high rank and
the one of low rank.

4. Simulation

In the simulations, we investigate the search per-
formances of the traditfonal GA and thé present
GA using the ﬁrop‘osed operations tor a clustering
problem. Table 1 shows the construction of each
GA and control parameters. GAl and GA2 are
the traditional search using one—point crossover
and uniform crossover, while GA3 uses the search
using the proposed operations. Table 2 indicates
the parameters of the experiment.

Table 1 Control parameters for GA1, GA?2

and GA3
I crossover mutation selection ]

GAL one-point

crossover - 0.01 roulette wheel,
GA2 uniforin oo =T elitism

crossover

proposed method

GA3

pe = 0.01 [p.,.:O.()Z l N =2

Table 2 Parameters for experiment

terminal . . .
generation population size | trial number
100 50 20

4.1 Experiment

Suppose that the clustering problem have to divide
50 data a; (i = 1,---,50) into 3 clusters G (k =
1,2,3). Each data have two positive real numbers
a; = (ej1,a;2) for two attributes A;, A;. Fig.3
shows the arrangement of each data when the z—
axis is for the first attribute value and the y-axis
is for the second attribute value.

The dissimilarity between data a; and q; is de-
fined by using two attribute values as follows:

d{aj,a;) = (1.0 —cosf;;) x 100.0
2
Z GikQjk
cos §;: — k=1 (9)
sty = 2 2 1/2
(55
k=1 k=1

Namely, 6;; is the angle between vectors a; and aj.
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Fig.3 Arrangcment of data for clustering

The simulation results are shown in Fig.4 ~ 7.
Fig.4 and Fig.5 show the convergence of the eval-
uation function and the variations of the degree of
population diversity V(¢). Fig.6 shows the con-
vergence of the evaluation function without muta-
tion. Fig.7 shows the variances of the evaluation
value at each generation. These results show the
average of 20 trials for each GA.

From these results, we can summarize as follows:

(a) The GA3 using the concept of the degree of
population diversity is superior in the conver-
gence of the evaluation function to other GA,
and maintains the population diversity com-
paratively long.

(b) The performances of the GA1l and GA2 are
degraded by the effects of mutation when
compared with the GA3.

(c) The GA3 reduces the variances of evaluation
function at each generation. After 100 gener-
ations, the variance is zero. Namely, the GA3
leads to the identical individual at all trials.

Next, we compare the performances of the GA3
and the MST method. We consider the cluster-
ing when the attribute values of the data at the
Fig.3 have observation noises. The classification
results are shown in Fig.8, 9. In these figures, the
same marks are classified as members of the same
cluster.

These results can be concluded the following:

(a) The MST method is indicated seusitive re-
sponses for the noise, while the GA3 is indi-
cated robust property.
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Fig.9 Classification result of the MST method

5. Conclusion

In this paper, we have proposed the combinatorial
optimization method using GA for the clustering,
especially for the clustering not based on the Eu-
clidean distance. Moreover, in order td improve a
search performance of GA, we have introduced the
concept of the degree of population diversity, and
we have used this index for control parameters of
the genetic operators and proposed a method of
cal¢ulation for the fitness of an individual.
Numerical simulations have shown the follow-
ings: 1) The GA using the concept of the degree of
population diversity is superior to the traditional
GA with respect to the convergence of the evalu-
ation function and the reduction of the variance
of the evaluation function; 2) When data have
observation noises, the GA using the proposed
method shows robustness for data classification.
From these results, we conclude that GA using
the degree of population diversity is useful for the
clustering not based on the Euclidean distance.
Since the concept of the degree of population
diversity is not limited to clustering, our next work

will be application of the present method to many
problems to investigate its general usefulness.
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