On-line Handwritten Character Recognition with Hidden Markov Models

통계적 방법에 의한 온라인 한글 필기 인식

  • 신봉기 (한국과학기술원 전산학과) ;
  • 김진형 (한국과학기술원 전산학과)
  • Published : 1992.10.09

Abstract

손으로 쓴 글씨는 인쇄체와 달리 많은 변형이 있다는 점이 한글 필기 인식에서 가장 큰 장애물로 통한다. 본 논문에서는 이점을 해결하면서 필기에 대한 제한을 대폭 줄인 온라인 한글 인식 방법을 제시하고자 한다. 봉넷(BongNet)은 온라인 한글 필기를 인식하기 위한 네트워크 모델이다. 글씨 인식에 들어가는 여러가지 정보를 네트워크라는 틀 안에 표현한 것 인데, 기본적으로 네트워크 구조 자체가 표현하는 정적 글자 구조 정보와, 글꼴에 따라 달라지는 것으로써 노드간 확률적 이동을 나타내는 동적 정보를 포함한다. 본 모델에 따르면 한글 인식은 네트워크 안에서 최적 경로를 따라 초, 중, 종성 자소열을 찾는 문제로 변환된다. 동적 프로그래밍 기법을 이용하여 그 경로를 찾는 인식 알고리즘은 입력 데이타의 양에 정비례하는 효율성을 갖는다.

Keywords