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ABSTRACT

We present a new EEG waveform detection method,
based on the search of distinctive line-segments. The method
is based on the assumption that EEG waveform morphology is
characterized by a sequence of its distinctive line-segments
and their structural features. In this method, the distinctive
line segments are first searched for, and the structural feature
analysis is performed on the found line-segment sequence.
Experiments of detecting epileptic spikes are performed on
four different subjects.

INTRODUCTION

In human visual EEG analysis, the most important
descriptors are waveforms occurring in the EEG. Thus, a
reliable EEG waveform detection is indispensable for an
automated EEG analysis that imitates human visual EEG
inspection.

Several attempts have been made to automatically detect
EEG waveforms. Many investigators used amplitude-duration
criteria based on the configuration of extrema either with the
use of filters to make specific frequency-range EEG activities
more prominent [1, 2, 5]. Relatively few investigators
developed waveform recognition systems that use severat
descriptive features of half waves without using any signal
preprocessing [3 4].

In this paper, we present a new waveform detection
method, based on the assumption that the morphological
characteristics of an EEG waveform can be represented by a
sequence of its distinctive line-segments and their structural
features. The structural features includes the sequential
pattern of distinctive line-segments and their connectivity.

SEARCH-BASED LINE-SEGMENT
DETECTION

A variety of seginentation techniques have been
developed to represent EEG data for both data reduction and
the application of syntactic pattern recognition techniques. In
the wavefonn detection problems, most of these segmentation
techniques were applied for the purpose of preliminary signal
conditioning, and they usually require no explicit knowledge
of waveform morphology. However, the method presented

_here explicitly uses the morphological knowledge of EEG
 waveforms to extract the distinctive line-segments that form
the EEG waveform being searched for.

The search-based line-segment detection, uses six
numerical threshold values to determine two regions: a
search-continuation region and a valid line-segiment region.

During the search process, the search-continuation region
acts as a search space limiter, i.e., the existence of a line-
segment out of this region will interrupt the current search
process. A line-segment within the valid line-segment region
will be classified as a valid line-segment, and the search
process will continue. Figure 1-a illustrates a successful
search process, in which at least one valid line-segment was
detected. After the first valid line-segment is successfully
searched for, the search-continuation region is shrunk as
shown in Figure 1-d.

Since a successful search process finds out at least one
valid line-segment, more analysis is necessary in order to
select a single line-segment that represents a portion of data.
Different selection criteria are available, depending on the
morphology of an EEG waveform. In our experiments, we
employed the largest amplitude criterion, which select a
line-segment with the most largest amplitude.

STRUCTURAL FEATURE ANALYSIS

The structural features of an EEG waveform morphology
is represented by the sequential alignment pattern of
distinctive line-segments and their connectivity
characteristics. The sequential pattern is represented by
concatenating the symbols, each of which indicates the type
of a line-segment. Numeric parameters that specify how the
distinctive line-segments are linked together are used for the
representation of the connectivity characteristics.

In a traditional pattern recognition approach, the
sequential pattern of primijtive elements is used as amain
structural discriminator. However, this method used the
sequential pattern of distinctive line-segments, called a
pattern template, as a preliminary discriminator for
discarding an invalid line-segment sequence before a more
claborate analysis is carried out. The sequence of line-
segments conforming to a given pattern template will undergo
more analysis, but the sequence that does not follow the
template will simply be rejected and no more analysis will be
performed.

In order for the line-segment sequence that passes the
preliminary sequential filtering to be classified as an
authentic waveform  event, it must pass in the
connectivity examination. The connectivity examination
consists of two stages: one is to test whether adjacent two
line-segments are properly connected and the other is to
examine the rhythmic features of line segment sequences.

EXPERIMENTAL RESULTS

In this study, EEG data of six different subjects recorded
at the university of Florida, Gainesville, Florida, were used
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as a database for the evaluation of the waveform detection
algorithm. The format of digitization follows the sampling of
250 Hz with a 8-bit resolution. The paper recordings, each
of which is 1.5 hour long, contain a variety of epileptic
spikes and other abnormalities including background
slowing. The subjects talked, ate, moved, and slept, so the
recording included eye movements, and muscle, electrode
artifacts, and sleep spindles.

The selection of accurate waveform models is a
preliminary but an important step for the improvement of the
detection performance. Initially, a coarse waveform model
isset upby using the waveform characteristics generally
admitted. After a cycle of testing and tuning, the
parameters are adjusted to give good man/machine
agreements. Two EEG records were used as a training data
set. After the parameters are finally tuned, four EEG
recordings from different subjects were used for the
evaluation of the detection performance.

The agreement between the computer and the visual
scoring was assessed by a detection ratio and the number of
false detections per minute. The detection ratio is defined as
the percentage of the number of epileptic spikes that human
EEGers and the computer detect, over the total number of
epileptic spikes that two EEGers agree. The false detection
rate or computer over-recognitions is defined as the number of
false detections made by the computer but not marked by
either EEGer (i.e., isolated computer detections) per minute.

The results are shown in Table 1. Most of the epileptic
spikes found by both EEGers were detedted by the computer.
In the subjects RO§RO01 and RO8DO01, both EEGers found
no epileptic spike. Thus, we could not calculate the detection
ratio. In most cases, a Jarge amount of false detections were
reported.

DISCUSSION

The use of a search technique for detecting distinctive
line-segments requires an elaborate connectivity analysis,
since the adjacent line segments obtained from the search
are not always connected properly. However, the search
technique brings in some useful properties. Even when a fast
activity is superimposed over a slow activity, it can detect
the fast activity without a priori signal conditioning such as
band-pass filtering. The unwanted waveform distortions due
to the filtering can also be avoided.

Advantages of automated processing of EEG data
include inherent consistency of interpretation, rapid and
inexpensive data reduction, and on-line EEG monitoring to
initiate data storage or analysis. To be effective, the
computer must accurately interpret the EEG and operate in
real-time or faster.

In the experiments, most of epileptic spikes marked by
two EEGers were detected by the detection algorithm, but it
also made many false detections. The false detections can be
considerably eliminated by analyzing temporal and spatial
context information from multiple channels of data, and by
using encoded human expertise of visual interpretation [3].
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Figure 1. Examples of the search process. (a) Failed search
process. (b) Successful search process. (c) Continued, but
failed search process. (d) Adjustment of the search-
continuation region after detecting the first valid line-
segment.

Subject Scorer EEGers agreed System Both agreed
ROBBUOI 25 4858 2
RO8PAC2 60 980 55
ROSRO0L 0 547 0
RO8DOOI 0 16 0

Table 1. Comparison of the visual scoring agreed by two
EEGers and the detection system's output (the number of
individual epileptic spikes marked during one and half long
test period).
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