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IMPLEMENTATION OF PSEUDODYNAMIC TEST METHOD
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1. Introduction

The main driving force for the development
of the pseudodynamic test method has been the
need for seismic performance data for large-
scale structures. For a structure this size,
shake-table tests would clearly be

impractical. An additional advantage of the
pseudodynamic test method is that it allows
the test to proceed at a much slower rate than
the earthquake. Thus more time is available to
observe the accumulation of damage.

0f course, the pseudodynamic method also
has some disadvantages: (1) the mass of the
structure must be modeled mathematically: (2)
deformation rate and stress relaxation effects
can introduce errors in a test that proceeds
slower than real life rate, and (3) the
results can be very sensitive to measurement
and control errors.

This paper deals with the last of these
difficulties. Measurement and control errors
tend to have a cumulative effect, and in some
cases these have been seen to fully dominate
the response. Particularly for MDOF systems
there is a tendency for spurious excitation of
the higher modes [Shing and Mshin (1983)].

2. Implementation of the Explicit Time Integra-
tion Scheme

Explicit time integration schemes include
the central difference scheme, Newmark's
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method with fB=0, and a modification of
Newnmark's Method [Shing and Mahin 1983), There
are different ways of implementing each of
these methods for a pseudodynamic test.

These involve mainly the use of measured or
computed displacements in the solution of the
time-discretized equations of motion, and may
lead to different error propagation
characteristics. In this section attention is
focused on the explicit Newmark method. The
implementation of the method is explained by
following the flow diagram in Fig. 1.
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Fig. 1 Flow Diagram for Pseudodynamic Method
Based on Explicit Scheme



Timestep n is taken to begin at time 7=7Cj
(compute phase) with the reading of the
displacements and resisting forces, whose
values after measurement and digitization
errors are denoted by 3dn and 3dsn,
respectively. The operations performed in the
computational box are based on the following
equations:

Ssn = 3sn (n

MSan + CS5vn + Ssn = Fn (2}

Syg = 5Vn-l + (5an-1 + San) (3)
sdnoj = sdn + At 5Vn + (At)z sﬂn (4)

sdnol = 6dn + 5dnol - 3dn (5)

wherein the upper left index 5 (in 5dn, 3vn,
5an, and Ssp) indicates values of the
quantities that satisfy the time-discretized
equations of motion, Egqs. 2-4. These will be
referred to as the consistent values of the
displacements, velocities, etc.

The computations proceed as follows:

1) The measured resisting forces will be used
directly in the equations of motion as the
consistent values. Hence Eq. 1.

2) Since the velocities and accelerations at
time n-1 are available from the computations
at the previous timestep, Eqs. 2 and 3 can be
solved for the unknown velocities and
accelerations at time n, 5vn,and San.

3) The desired displacement for timestep R+l
is computed from Eq. 4.

4) In Eq. 5, the command signal for the
displacement at timestep N+l is computed as
the sum of the command signal at the previous
timestep plus a desired displacement
increment. This desired displacement increment
is the difference of the desired displacement
for timestep n+1 and the measured displacement
at timestep n.,

The purpose of the compensation procedure in
step 4 is to prevent the displacements that
are actually imposed on the structure from
drifting away from the desired displacements.

At the end of the compute phase, 7=Thp
(load phase), the displacement command signal
is incremented gradually from its value at

time n to its value at time n+l, following a
specified ramp function. This results in an
out-of-balance voltage 7dn - !dn and produces
the appropriate motion of the actuators. After
a hold period, to allow the actuator motion to
settle down, the resisting forces and
displacements are again read, and the whole
process is repeated with a unit increment in
n,

3. Implementation of the Implicit Time Integr-
ation Scheme

The only difference in the hardware setup
for the implicit scheme (see Fig. 2) lies in
the use of force as well as displacement
feedback in the inner control loop. The
readings of the resisting forces used for
control purposes are denoted s, These
resisting forces are then multiplied by a

matrix M, which will be defined later (Eaq.
14). The resulting force feedback and the
displacement feedback are summed to give an
adjusted predictor displacement,

1g =14 + M1 Is (6)

The solution to the implicit time-discretized
equations of motion for a timestep is reached
when the adjusted predictor displacements
reach a value that can be computed from
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Fig. 2 Flow Diagram for Pseudodynamic Method
Based on Implicit Scheme
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information available from the solution at the
previous timestep alone, Therefore the command
signal for this case represents a set of
adjusted predictor displacements. This command
signal is varied gradually using a ramp
function in exactly the same way as before.

The basic equations that describe the time
integration scheme are:

Man-1 + (1*a)Cvps1 ~ aCvn + (1+a)sns1 - ASn

=(1*G)Fn~1 - aFn (7)

Vnel = Vnel * 7 At 8nej (8)

dne1 = dnet + B(AL)Z ansy (9)
where

;nﬂ =va+ (1 - 7)At an (10)
and

dn+1 = dn + At vp + {] (11)

2 -8 ](At)z an
are the predictor values of the velocities and
displacements. If the solution for timestep n
is known, these predictor values can readily
be computed, Thus Eqs. 7-9, together with the
experimental force-displacement relation for
timestep n+l1,

Sn+t = Sn+1 (dnst) (12)
constitute the four equations that determine
the solution for timestep n+l.

The unknown velocities and accelerations,
vn+] and an+) can be eliminated from Eqs. 7-9
to give:

dnet - dnet + M1 spey = 0 (13)
where
~ 1 bd
M= M+ C 14
(1 + a)B(At)? BAt e
and
dn+1 = dnet * M1 |Fner - Fn
1 +a
(15)
a N
+ sn - Cvaey + Cvn
I +a
is the vector of adjusted predictor
displacements for timestep n+l, Inspection of
Eq. 15 reveals that these adjusted predictor
displacements can be computed from the

-9] -

The problem at
13 together with

solution at timestep n alone.
hand thus reduces solving Eq.
the experimental relation (Eq. 12) for
unknowns dn+i1 and sn+). This is exactly what
is achieved by the inner loop actuator control
circuit shown in Fig. 2: The command signal,
produces actuator motion until the feedback,
balances the command signal. At this point
Eqs. 12 and 13 are satisfied, and Eqs. 8 and 9
can be solved for the unknown velocities and
accelerations at time n+l. The resulting
solution for timestep n+l also must satisfy
Eq. 7, since this equation can be recovered by
substituting Eqs. 14 and 15 into Eq. 13,

As before, the timestep is taken to begin
with the reading of the displacements and
resisting forces at time T=1C, (compute
phase). As indicated in Fig. 2, the values of
these quantities, after measurement and A/D
conversion errors, are denoted 3dn and 3sn,

and calculated from Eq. 15. However, because
of measurement and control errors, these
quantities will not satisfy Eq. 13 exactly

Instead, the measured adjusted predictor
displacements
3dn = 3dn + M1 3sp (16)

differ from the computed or desired values of

the adjusted predictor displacements. As
before, it is convenient to define consistent
values of the displacements, velocities,

accelerations and resisting forces as those
that satisfy the time-discretized equations of
motion, Egs. 7-9. Again these values are given
an upper left index 5:

san - 5dn + M1 550 =0 (17)

A number of possibilities present themselves
for defining 5dn and Ssn such that-Eq, 17 is
satisfied. It will be seen that the choice
will affect the error propagation
characteristics of the method.

Possibility A: Use the measured displacements,
and adjust the resisting forces;

Sdn = 3dn (18)

SSn - M (3dn - 5&n) (19)

Possibility B: Use the wmeasured resisting
forces, and adjust the displacements:

SSn 35n (20)

Sdn 5&n - M-t 3gy (21)



Possibility C: Use a weighted average of
possibilities A and B. In this case, the
consistent values of the displacements and
resisting forces are calculated from

Sdn = 3dn + WB(san -Sa") (22)
Ssp = 35y + M WA(SAn '3én) (23)
where weighting matrices, Wa and W must
satisfy the condition
Wa + W =1 (24)
where I is the identity matrix.

Once the consistent values of the
displacements have been computed from Eqs. 22
and 23, the following expressions are
evaluated in the order stated:

S5an = (5dn - 5dn) (25)

B(At)2
Svan = Svn + 7At San (26)
5;n.1 = Svp + (1-7)At San (27)
Sdn+y = 5dn + AtSva +[ % - B](At)z San (28)

5dn.1 = Sdneg + M-1 [1.- % r

n+] = n+] ne+l 1 +a n (29)

a ~

+ Ssn - CSvnep + C5Vn]
1 +a +a

sanvl = Gan + Sanol - 3an (30)
The new command signal is sent to the ramp
operator box at time T=tln (load phase). From

then on the procedure may be followed on the
flow diagram in Fig. 2, and is analogous to
the explicit case.

4, Error Analysis for the Explicit Time Inte-
gration Scheme

This section serves mainly as an introduc-
tion to the next, and to provide a basis for
comparison of the error propagation
characteristics of the explicit and implicit
schemes.

As stated in Egs. 2-4, the consistent
values(upper left index 5) satisfy the
time-discretized equations of wmotion. By

taking the difference of each of Eqs. 2-4 and
the corresponding equation for the unindexed
quantities, it is seen that

M5aen + CSven + Ssen 0 (31)

—-02~

-

(32)

At
ven Sven-1 + E— (Saen-t + Saen)

1
Sden+1 Sden + AtSven E{At)z Saen (33)

In other words, the cumulative errors of the
consistent quantities satisfy the homogeneous
time-discretized equations of motion. However,
the consistent resisting forces are not the
resisting forces corresponding to the
consistent displacements. Indeed, for a
nonlinear and history dependent structure, the
resisting forces at timestep n in general
depend on the displacements at each of the
previous timesteps. Thus,

sa(d1, dz2, ds,

Sn , dn) = sn(Dn) (34)

Assuming that the errors are small so that
higher order terms in the errors can be
neglected, Eq. 34 becomes:

Osn = sn + Kn Open (35)

Kn =

asn
— = (Knj Kn2 --- (36)
8D

Kan), Kmn = —
n ad

n

Using the definitions and properties of the
errors, Eq. 35 can be cast in the form

5sen = Kn Spen + Kn 5%pen + O5sen (37)
M 5sen + C Sven + Kn Spen = fn (38)
fa = Kn O5pen + 50gey (39)

In order to interpret the forcing function
for the errors in terms of measurement and
control errors, decompose the error terms on

the right hand of Eq. 39, and use Eq. 1, to
obtain
fa = Kn o:’Den + Kn 3SDen + 3038n (40)

5. Error Analysis for the Implicit Time Inte-
gration Scheme

By an argument entirely analogous to that
for the explicit scheme, it can be shown that

M

+

S5aent1 + (1+a) C Sven+1 - a C Sven
(1+a) Kn+ 5Den01 - a Kn Spen
(1+a) fney - a fa

(41)

The decomposition of the terms in Eq. 39 is
different for the implicit case. From Egs. 22

and 23, it is seen that
35pen = W 35fen (42)
35sen = &WA 355en (43)



T

Dn

dn

&1 az 53 e (44)
QB is a block diagonal matrix with n by n
blocks in which the diagonal entries are the
matrix Wp. Decomposing the error terms in Eq.
39 such that Egqs. 42 and 43 can be applied

yields,

fn = Kn°3nen+Knﬁn35nen*MwA53Een*3°sen (45)

If we consider a linearly elastic system with
stiffness matrix K, and assume that there are
no measurement errors, Eq. 45 reduces to

fa = (KWg - M Wa) 353en (46)

1f, in addition to being linearly elastic,
the system considered has only one degree of
freedom, the expression for the control errors
(Eq. 45) reduces to

fo = (W - » Wa)K 353en (47}
in which
1 7
¥ = + (48)
At)2? At !
a2 (14 [_] At
n alB T a3 T
and T and [ are the natural period of

oscillation and damping ratio of the system
respectively. If possibility A is used, it is
seen that the effect of the control errors
increases very rapidly as At becomes small.
This is similar to the phenomenon observed in
the explicit scheme, when measured instead of
computed displacements are used in the time
integration scheme, On the other hand for
possibility B, the error excitation function
remains constant. Examination of Eq. 48 also
reveals that the quantity ¥ can be interpreted
as a cumulative error ratio, defined as the
ratio of the absolute value of the effect of
control errors for possibility A to that for
possibility B. A plot of this error ratio as a
function of the size of the timestep is given
in Fig. 3. If there is no numerical or viscous
damping a={=0, the value of the error ratio is
unity at the stability limit for central
difference scheme (At=T/m), and increases like
1/(At)2 as the size of the timestep is
decreased. Fig.3 illustrates this behavior,
and also reveals that the effect of numerical
and/or viscous damping on the error ratio x is
relatively small. The values of the weighting
factors for which the effect of control errors
vanishes are

(49)
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6. Conclusions

The error analysis presented herein hinges
on the definition of what the authors refer to
as consistent values of displacements,
velocities, accelerations, and resisting
forces as values of these quantities which
satisfy the time-discretized equations of
motion, (Due to experimental errors the
consistent displacements and resisting forces
do not exactly satisfy the force-displacement
relation for the structure, however.) The
error propagation characteristics of the
method are seen to be strongly dependent on
how these consistent values are obtained from

the measured data: if the measured
displacements are used to calculate these
consistent values (Possibility A), the

cumulative errors grow without bounds as the
timestep is decreased. On the other hand,

using the measured resisting forces to compute
the consistent values (Possibility B) leads to
more desirable error propagation

characteristics,

If the structure is linearly eleastic and
its stiffness matrix is known, it is possible
to define the consistent values in such a way
that the effect of control errors is
eliminated completely. Although this cannot be
achieved for a nonlinear and inelastic
structure, the adjustment scheme can still be
used to suppress the effect of control errors
while the structure remains elastic.
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