Transmission Electron Microscopy Observation of the Interface between Si Substrate and PbTiO₃ Thin Film Deposited by Atmospheric Pressure Metal Organic Chemical Vapor Deposition, Cheol Seong Hwang and <u>Hyeong Joon Kim</u>, Department of Inorganic Materials Engineering, Seoul National University, 151 - 742, Seoul, Korea

The interface between chemically vapor deposited PbTiO₃ thin film and Si substrate was investigated by TEM and EDX. PbTiO₃ thin films were deposited by metal-organic chemical vapor deposition using Pb-TMHD and Ti-isopropoxide as source materials in a temperature range of 410~500°C under Ar plus O₂ atmosphere.

During deposition of PbTiO₃ thin films on bare Si substrate Pb-silicate layer was produced at the interface between PbTiO₃ and substrate due to the diffusion of Pb and O ions into Si substrate irrespective of the deposition conditions. To prevent the unintentional formation of Pb-silicate layer at the interface, several diffusion barrier thin films such as TiO₂, ZrO₂, TiN, and Pt were deposited prior to PbTiO₃ deposition and their reactions with Si substrate and PbTiO₃ thin film were also investigated. TiO₂ and ZrO₂ films deposited on Si were easily converted to PbTiO₃ and PbZrO₃, respectively, during the PbTiO₃ deposition at a substrate temperature of 410°C by the reaction with diffusing Pb and O ions. The diffusing Pb and O ions penetrated through the PbTiO₃ and PbZrO₃ layer into Si substrate and finally produced Pb-silicate layer at the interface. TiN film did not react with Pb during the deposition of PbTiO₃, but it reacted with PbTiO₃ to form a lead-deficit pyrochlore during post-deposition rapid thermal annealing at 700°C. Pt could be a diffusion barrier, but the surface of PbTiO₃ film and the interface between film and substrate became very rough due to the formation of Pt-silicide during deposition.

But Pt thin films deposited on a thermally oxidized Si wafer can act as a good barrier to prevent the reaction between PbTiO₃ thin film and Si substrate during deposition and post-RTA at 700°C. Pt surpresses the diffusion of Pb to Si substrate and SiO₂ prevents the formation of Pt-silicide. Therefore, a single phase PbTiO₃ thin films can be deposited on Pt/SiO₂/Si substrate at a substrate temperature of as low as 350°C by MOCVD.

Hyeong Joon Kim, T; (02)-880-7162, F; 884-1413.