THE EFFECT OF PRIOR ε MARTENSITE CONTENT ON THE SHAPE MEMORY EFFECT IN Fe - 17%Mn ALLOY, Joong Hwan Jun and Chong Sool Choi, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea

The composition of the alloy used in this study was Fe - 16.72%Mn - 0.02%C in wt.%. This alloy was homogenized at 1150%C for 24 hours in the protective atmosphere. The transformation temperatures, M_s , A_s and A_f were determined by using DSC, and they were 158%C, 185%C and 220%C. The alloy quenched into the water bath from 1050%C was composed of about 60 vol.% ε + retained γ . The purpose of this study is to investigate how the SME of the alloy varies with the ε volume fraction. Therefore the alloy should have a wide range of ε volume fraction. In order to change ε vol.% greater than the quenched state, the alloy was cycle-treated from room temperature to 255%C. On the other hand, for the variation of ε content below the quenched state, the alloy was maintained for various times at a temperature just below M_s temperature, i.e. the stabilization treatment of the austenite was undertaken. In this way, we could change the ε martensite content from 30 vol.% to 92 vol.%. The SME measurements for these ε contents were made by using a bending method.

The SME decreased with increasing ε content, showing a minimum value around 60 vol.% ε , and then the SME increased with increasing ε content above 60 vol.% ε . To know the reason, we observed the microstructures before and after bending for the two alloys with ε contents below and above 60 vol.% ε . It was found that the bending deformation occurs by two types. One is the deformation due to the formation of stress-induced ε martensite, which is applied to the structures with lower ε contents. The other is the deformation due to coalescence of ε plates, which is applied to the structures with higher ε contents. However, if the deformation strain is greater than 2%, the strain is due to formation of the stress-induced α' martensite in addition to the coalescence of ε plates. It was found that the deformation due to α' formation does not bring SME at all by heating above Af of α'