# 시뮬레이션 기초이론

이화여자대학교 전산학과

김 명희 교수

### 시뮬레이션의 정의

- Simulation is the process of designing a model of a real system and conducting experiments with this model for the purpose of understanding the behavior of the system or of evaluating various strategies for the operation of the system.
- Experimentation with dynamic models.

문제 해결을 위한 도구(Tool),
 모델을 바탕으로한 실험,
 시스템의 이해,대안의 예측 또는
 최적화를 목적으로 함.

## 컴퓨터 시뮬레이션의 수행이유

### 실제 실험 수행의 문제:

```
위험성 (예: war game)
시간 (예: 생태환경)
비용 (예: space shuttle)
부작용 (예: hauthon effect)
```

#### 컴퓨터 시뮬레이션만의 기능:

- Back Track and Replay
- Freeze
- Malfunction
- Override

## 시뮬레이션의 대상

### 시스템의 정의:

- 특정한 목적을 위해 서로 연관관계를 갖는 element들의 집합으로 주위 환경으로부터 구분되어지는 것
- A collection of interacting elements that function together for some purpose
- A collection of inputs whose pass through certain processing phases to produce outputs

## 시스템의 구성

요소 : Entity

Attributes

Activity

예 :

| System                              | Entity                             | Attiribute                   | Activities Signaling Forcing Turning     |  |
|-------------------------------------|------------------------------------|------------------------------|------------------------------------------|--|
| Aircraft                            | Autopilot<br>Aerilons<br>Airframe  | Error<br>Angle<br>Heading    |                                          |  |
| Factory Workpieces Machines Markets |                                    | Number<br>Capacity<br>Size   | Ordering<br>Machining<br>Scheduling      |  |
| Business                            | Products<br>Customers<br>Markets   | Price<br>Demand<br>Size      | Manufacturing<br>Selling<br>Advertising  |  |
| Political                           | Parties<br>Issues<br>Social groups | Size<br>Acceptance<br>Income | Fund raising<br>Campaigning<br>Migrating |  |

## 시뮬레이션의 적용분야

- Computer System ( network, circuit design )
- Flow process (oil,gas,water etc.)
- Game, Educational Modeling
- Health care system
- Manufacturing system
- Marketing and Sales modeling
- Military
- Traffic control
- Aircraft and Airport operation
- Financial modeling
- Governmental and urban planning
- Etc

•

•

•

## 시뮬레이션의 종류

- Monte Carlo System Simulation
- Discrete System Simulation
- Continous System Simulation
- Combined Discrete-Continous Simulation

## 시뮬레이션 과정

- 시스템 분석과 문제의 정의
- 모델 구축
- 타당성 검증
- 실험 계획
- 실험 수행
- 결과 분석
- 문서화

### 문제의 정의와 시스템 분석

- Formulate of problem
  Pt = | Dt At |
- System의 Boundary와 Environment의 구분
- Real System

Abstraction ...... Entity
Simplification ..... Activity
Approximation ..... Attributes

 $\downarrow$ 

Logical flow-diagram or Static Model

## 구축 단계



PERT GPSS
CP/M SIMSCRIPT
Petri-Net SLAM
. SIMAN
. .

#### 모 델

## 정의:

- A model is a representation of an object, system or idea in some form other than that of the entity itself
- A simplified representation of a system

#### 구분 :



## 타당성 검증

#### Verification

### Validation

- Concept
- Methodology
- Results
- Inference
- Data

Problem Analysis

### 실험계획

원칙 - 최소 수행 횟수

목적 - 분석, 관찰

방법 - parameter, 변수의 level들의 다양한 조합 수행

- 초기, 종료 조건
- sample size
- 결과의 차이 축소

#### 실험 수행

Execution
Sensitivity Analysis

결과 분석과 문서화

## 시뮬레이션을 위한 기초 통계

## 개념:

Continous Distribution
Discrete Distribution

PDF( Probability Density Function )
CDF( Cumulative Distribution Function )

Random Number Random Variate

Correlation Covariate

Hypothesis Test Confidential Interval

#### DISCRETE SYSTEM SIMULATION의 예



Post office system.

- · single-server-single-queue system
- · FIF0
- •목적(관찰 대상)
  - customer arrival rate
  - service rate
  - server utilization
  - average queue length
  - average number in the system
  - average waiting time
  - average time spent in the system

#### Observed Data for 2 hours

| Customer i | Arrival time | Inter-<br>arrival<br>time | Time<br>service<br>begins | Time<br>service<br>ends | Service time, $S_i$ | time in                | Time spent in system, $(W_i + S_i)$ |
|------------|--------------|---------------------------|---------------------------|-------------------------|---------------------|------------------------|-------------------------------------|
| 1          | 15           | 15                        | 15                        | 20                      | .5                  | 0                      | 5                                   |
| 2          | 17           | 2                         | 20                        | 23                      | 3                   | 3                      | 6                                   |
| 3          | 19           | 2                         | 23                        | 27                      | 4                   | 4                      | 8                                   |
| 4          | 30           | 11                        | 30                        | 31                      | 1                   | 0                      | 1                                   |
| •          | •            | •                         | •                         | •                       | •                   | •                      | •                                   |
| •          | •            | •                         | •                         | •                       | •                   | •                      | •                                   |
| •          | •            | •                         | •                         | •                       | •                   | •                      | •                                   |
| 25         | 120          | 3                         | 122                       | 127                     | 5                   | $\dot{2}$              | ż                                   |
|            |              |                           |                           | :                       | $\Sigma S_i = 71$   | $\sum_{i} W_{i} = 100$ | $\sum (W_i + S_i) = 171$            |

Observed data (time in minutes) for post office system.

- Total number of arrivals : N = 25

- Arrival time of the last customer : T' = 120

- Departure time of the last customer: T = 127



Observed number of customers in the queue.

|   | No. of customers in queue, $m_i$ | No. of customers in system, $n_i$ | Cumulative time, $t_i$ |
|---|----------------------------------|-----------------------------------|------------------------|
|   | 0                                | 0                                 | 56                     |
| 2 | 0                                | 1                                 | 21                     |
|   | 1                                | 2                                 | 15                     |
| , | 2                                | 3                                 | 20                     |
| 5 | 3                                | 4                                 | 15                     |
|   |                                  |                                   | $\Sigma t_i = T = 127$ |

Observed cumulative times for customers in queue and in system.

|                                      |        | Approximate Method           | Theoretical Method           |
|--------------------------------------|--------|------------------------------|------------------------------|
| Average arrival rate                 |        | $\frac{N}{T'}$               | λ                            |
| Average service rate                 |        | $rac{N}{\Sigma S_i}$        | μ                            |
| Utilization of server                | λ<br>μ | $\frac{\lambda}{\mu}$        | $\frac{\lambda}{\mu} = \rho$ |
| Average waiting time in queue        | Wq     | $\frac{\Sigma W_i}{N}$       | $\frac{\rho}{(1-\rho)\mu}$   |
| Average time spent in system         | W      | $\frac{\sum (S_i + W_i)}{N}$ | $\frac{1}{\mu - \lambda}$    |
| Average number of customers in queue | Lq     | $\frac{\sum (m_i t_i)}{T}$   | $\frac{\rho^2}{1-\rho}$      |
| Average number of customer in system | L      | $\frac{\Sigma(n_i t_i)}{T}$  | $\frac{\rho}{1-\rho}$        |

|                                          | Approximate method | Theoretical method | Simulation<br>method |
|------------------------------------------|--------------------|--------------------|----------------------|
| Average no. of customers in system, L    | 1.35               | 1.43               | 1.353                |
| Average no. of customers in queue, $L_q$ | 0.79               | 0.84               | 0.793                |
| Average time spent in system, W          | 6.84               | 6.94               | 6.72                 |
| Average time spent in queue, $W_q$       | 4.0                | 4.08               | 3.94                 |
| Utilization of postmaster p              | 0.59               | 0.59               | 0.56                 |