An Extended Metanodel based on Logic & Object-Oriented Approach

HEE 2 A%, o] sl

(gR3petr1E9 Ao eat)

1
Au)

[J
)
L
=
2
r'J
-3

H
o

lo
N
(= o

BE FE3] 230 -‘%%3}31 Tr%‘—L'EMl 3l<>ME BAEE AT At
T I 571 ¢lsl #gd wel 2gol AAEch A=
Loéff} | isto] AA=|2 vole} RYE 7Nt

st RS A7 Slsted =28 =gstalrt

fuodo fr
B
%
e
o)
ot
o
‘H‘
o _i({I
Oil

I. Introduction

Software is a major elements in information systems(IS) and the difficulties of
IS development by different developers have led to the adoption of
software-developement-environment (SDE). The primary purpose of meta system is to
generate major parts of particular method based SDE as its instance [DART 91 1[PERR
91]. The impetus toward meta system approach arises from the facts that method
based SDEs are effective only in fairly restricted areas and have extremly similar
structures and underling principles.

However, to generate method based SDEs such as specification support system
efficiently , contemporary meta systems have some drawbacks. One of their major
shortcomings is that they are relatively poor in their expressive power of
metamodel that is a core part of meta system. Also, contemporary meta sSystems
should be more intelligent.

Nowadays object-oriented and logic-based Approaches have attracted growing
interest among software designers, particularly among those working on
knowledge-based applications. Because both offer real advantages over classical
data models and traditional programming methods [KOSH 881, we think that
object-oriented approach can complement sSemantic scantiness of current ER based
metamodel and logic approaches can take deductive capability easily. In this
paper, we combine object-oriented approach with logic approach and design LOOM
(Logic and Object Oriented approaches based Metamodel) to enhance the capability
of meta model. A prototype meta system, LOOMS, is implemented in Prolog language
and C language on PC.

II. Meta System
In general, SDE is defined as a set of software/hardware tools which is provided

503

to developers in software development process. In particular, Method-based
environment support particular development methods and management of the
development process[DART 87]. Development methods are those used by developers in
phases such as requirements analysis, system specification, and design,
Contemporary method-based environments have focused to support for requirement
specification. For convenience, the term of development environment 1is used
indifferently to that of requirement specification support environment. But,
developement environments have some problems with them. i.e. inflexibility and
difficulty in integration between systems. And to overcome these limitation some
researcher have proposed meta system approach [DEME 821.

As shown in Fig 2 the meta system takes as input a formal specification of an
development environment in some formalisms and generates an development environment
automatically. There are two levels of meta system use: the meta level and
environment level. At the meta level, the development environment is specified with
metamodel. And meta system generate development environment. At environment level,
the target system is specified with development environment,

Meta level Meta System
Specification Documents for
of development|—» Meta processor ——p» | development
environment Semantic analyzer environment

Report generator
Query system

Metamodel
Environment level v
Specification Development Documents for
of target —» Environment —»> target system
system

Fig. 1 Conceptual view of a Meta system

Meta system approach has several benefits as follows. 1) Endeavors for
development of individual support tool are saved , 2) flexibility for domains is
increased, and 3) comparison between individual specification support systems is
available.

The Core part of a Meta system is metamodel. Metamodel is meta system's data
model which is used to represent, store, and maintain specification for development
environment. To capture the information about the static and dynamic components of
the S/W developement environments, metamodel must be able to represent following
Knowledge.

(1) Structural knowledge

- Object - Relationship

504

(2) Behavioral Knowledge
(3) Constraint
- Static constraints
- Dynamic constraints
- Method constraints

Most existing meta system have an ER (or extended ER) based metamodel. That is,
they mainly concentrate on representing and capturing structural semantics of a
method such as static components, their attributes, and interrelationships. This
result in loss of Knowledge such as behaviors and constraint on structural
constructs and behaviors in modeling process. On the other hand, contemporary meta
systems should be more intelligent. But it is difficult to maKe existing E-R based
metamodel intelligent . To overcome above drawbacks LOOM is designed.

II1. Logic & Object-Oriented Approach

In logic programming, one constructs a program by creating Knowledge base of
axioms, that is, by saying what is true. The program is executed by entering a
theorem and asking the system to find proof given the set of axioms. An
application-independent inference engine accepts queries from user, access the
facts in its database, and draws appropriate conclusions, in some case, record its
conclusion in its database.

Prolog, the most popular example of logic programming style, uses first order
predicate logic to derive theorems. Prolog program is a collection of facts and
rules. The basic units for building facts or rules are "predication”, i.e.,
expression that’say simple things about the individuals in universe of discourse.
For example, a piece of information "canaries is a bird" is represented :

is_a(canaries,birds).

Classes of individuals, which we would introduce in English through words such as
"everyone", "anything”, and "somebody" must maKe use of variables. For instances,
"Every one is liked by his mother" can be represented:
likes(mother(X),X).
On the other hand, Prolog rules are if-then statement of the form
P1 :- P2,P3,...Pn.
For instance,
super_Class{ X, Y) :-
is_a(Y,2),
super_Class(X, 2)
means that "IF Y is a Z and X is super class of Z THEN X is super class of Y".
Prolog's declarative style provides a natural way to represent rule-based
Knowledge.

Object-Oriented approach originated in Simula 67 and Smalltlk-80. The heart of

the object-oriented approach is the idea of organizing knowledge as a collection of
objects. Since interaction between objects are allowed only through a uniform

505

communication mechanism called message passing implementation of each object
becomes independent of the implementation of others. This facilitates the
modularization of the knowledge of interest, Another important idea 1is class
inheritance. This enables the creation of objects by specializing existing similar
objects. This feature contributes to the factoring of Kknowledge as a class
hierarchy. But, it is difficult to represent knowledge of a declarative nature or
to develop a method incrementally in these languages.

From the above observations we think that it is one meaningful way to maKe more
powerful meta systems in representation and deduction to adopt these concepts in
metamodel. Several efforts have been made to design and integrate a object-oriented
model with logic. For example, see [BANC 861[[FUKU 86][Han 85]. In this paper, we
have adopted the way to implement object-oriented model in an existing 1logic
environment, because this approach is relatively easy to implement and not require
a new language or facilities. Object-oriented concepts which are necessary for
metamodel are implemented in Prolog.

IV. An Extended Meta Model
The LOOM's meta type consist of object type, relationship type, and constraint

type. Fig 3 shows the relationships of LOOM modeling constructs

method
E Object |<
. — Type
is_alp_of
constraings A participant
Abstraction attribute Method
Constructs
> X 5 attribute
ttribute
is_alp_of method
constrains v Vv \Y%
constrains
—[>| Constraint |———— | Relationship |<—
Type Type
is_alp.of

Fig 2. Modeling Concepts of LOOM
1. Object Type

All entities and concepts are represented as objects. Every object belongs to a
type, and the objects belonging to the same type have common attributes, and
methods. The specification of an object type includes the definition of
abstraction, attributes, and method implementation.

OBJ_TY <object type name> ;
IS_A or P_OF <abstraction definition> ;
ATTR <attribute definition> ;

506

METHOD <method definition> ;

2. Relationship Type

In LOOM, a relationship is represented by relationship type. The relationship
type is logical entity which provides an abstract mechanism for the association as
a conceptual construct, and capture the semantic of the relationship more clearly.

The relationship type of LOOM includes the information about participating

classes, role of participant, and attributes of the relationship itself. For
binary relationship, property of relationship type such as symmetry/asymmetry,
reflexivity/irreflexivity, and transitivity /intransitivity can be represented as
its attributes. Following is the syntax of an relationship definition. It is same
to that of object except for participant definition.

REL_TY <relationship type name> ;
IS_A or P_OF <abstraction definition> ;
PART <participant definition> ;
ATTR <attribute definition> ;
METH <method definition> H

3. Constraint Type
The constraints are explicitly represented and maintained as constraint type.
Semantics for relationships such as dependency ,commonness, and cooperation can be
considered as its constraints. For example, the existence of relationship depends
on the existence of each participant object types. This existence dependency is
represented by constraint.
The syntax of an constraint type definition is :

CON_TY <constraint name> ;
ABST <abstraction definition> ;

CONS <constraint content definition> ;

4. An Example : Data Flow Diagram
In this section, for help the understanding of LOOM, we specify model of data
flow diagrams (DFD) which is popular method for specification.
DFD method can be specified by using LOOM. Object types of DFD are 'interface'

’

t
’

'process’, ‘'dataflow', and ‘'datastore'. Relationship types of DFD are 'in
'retrieval’, 'store', 'transfer', and 'out'. And some constraints are exists.

The first example shows that object type ‘dataflow’ has an attribute
"description’ and its domain is string. At the next example, relation type 'in' is
a relation and it's participants, participants' role, cardinality are declared.

OBJ_TY 'dataflow' ;
ATTR 'dataflow' 'description' DOMA {string(X)} ;

507

REL.TY 'in' ;
IS_A 'in' 'relation’ ;
PART 'in' 'interface' ROLE 'sender' CARD 'totalfunctional' ;
PART 'in' 'dataflow' ROLE 'data_content' CARD 'totalfunctional';
PART 'in' 'process' ROLE 'receiver' CARD 'totalfunctional';

DFD method constraints are explicitly described in LOOM. For example, DFD
method should satisfy the followings.
"All relationship type have at least two different participant object types"”.
This constraint is described as

CON_TY 'at_least_ 2' ;
CONS 'at_least_2' {IF part(X,Y,_,._),part(X,Z,_,_)} THEN {Y \==2};.

V. A New Meta System(LOOMS)

For prototype of meta system with LOOM, Logic and Object Oriented model based
Meta System(LOOMS) is designed and implemented in Prolog language and C language
under PC environment.

1. Overall Architecture of LOOMS
The overall architecture of LOOMS is shown in figure 3. LOOMS consist of
following components.

1) Translator / Prolog Syntactic Checker

2) Query System'

3) Report Generator

4) Target System Specification

The descriptions of each components will be stated from now.

Meta User
v
Translator | 4————— Environment
Meta specification

v
Syntactic ——————p Internal Database
Checker of X Env. Spec

[—

v vV — v
Query Report Target System -
System Generator Specification

Fig 3. Overall Architecture of LOOMS

508

2. Translator & Prolog Syntax Checker
(1) Translation Rule
In LOOM all modeling constructs are translated into Prolog Horn clauses. The
translation of modeling constructs into Prolog Horn clauses has been taKen
automatically by use of Translator of LOOMS. To do this, it provide possibility
that we can use deductive capability maintaining object-oriented concepts.
Translation rules are shown in Fig 4.

[R 1] OBJ_TY <object type name> ;

=> obj_type(object_type_name).
(R 2] REL_TY <relationship type name> ;

=> rel_type(relationship_type_name).
[R 3] CON_TY <constraint type name> ;

=> con_type(constraint_type_name).
[R 4] IS_A <type_name> <super type name> ;

=> jis_a(type_name, super_type_name),
[R 51 P_OF <type_name> <super class name> ;

=> p_of (type_name, super_class_name),
(R 6] ATTR <type_name> <attribute_name>

DOMA {<attribute type>};

=> attr(type_name, attribute_name).

=> doma(type_name, attribute_name, X) :- <attribute type>.
{R 71 METH <type_name> <method name> ACT {<method action>};

=> method(type_name, method_name) :- <method action>,
[R 8] PART <relationship_type_name> <participant_type_name>

ROLE <role name> CARD <cardinality> ;
=> part(relationship type name,
participant name, role name, cardinality).
[R 9] CONS <constraint type name>
IF {<constraint condition>} THEN {<constraint action>} ;
=> cons(constraint_type_name) :-<condition>,!,<action>,

Fig 4. Translation Rule

(2) Translator & Prolog Syntax Checker

The function of translator 1is processing the meta specification of specific
environment in LOOM as input and producing Prolog clauses of it. This module is
implemented by the use of PCLEX/PCYACC. The process of this follows. First, meta
specification in LOOM is divided into token and its attribute value by lexical
analyzer (PCLEX), and passed to over syntax analyzer (PCYACC) for further
processing. Secondary, syntax analyzer receive the sStream of tokens and its
attributes value as input and parses this stream for the purpose of syntax
checking. Finally, translator put the stream of toKen and its attribute value into
predefined Prolog clauses according to translation rules, Then, Prolog syntactic
checker verify translated meta specification for Prolog grammar. It's process is
similar to that of translation. Checker is also implemented by the use of
PCLEX/PCYACC.

509

3. Query System
In LOOMS, query is processed through embedded inference engine, If user admit
query as Prolog clauses, then system try to answer by the use of back tracking and
unification. For example, user want to ask "what are attribute (include inherited)
of object type 'X'", then following Prolog clause is necessary.
?- attr('X',ATIR).

Then system answer all attribute of object type 'x' through 'is_a' hierarchy.

4, Report Generator
On user's request, the system can produces the following reports which reflect
different aspects of meta specification.

- Object Type Related Report
Object Type List
Object Type - Abstraction List
Object Type - Attribute List
Object Type - Method List
Object Type - Relationship Type List
~ Relationship Type Related Report
Relationship Type List
Relationship Type - Abstraction List
Relationship Type - Attribute List
Relationship Type - Participant List
- Constraint Type Related Report
Constraint'Type List
Constraint Type - Abstraction List
Constraint Type - IF THEN List

5. Target System Specification

For specification of target system, LOOMS use information of specification of
environment. That is, If one specify some aspect of target system, then LOOMS
verify its validation on the information of specification of method. For example,
when one specify " process 'count' ; ", LOOMS check whether 'process’ is object
type or relationship type or constraint type. To specify target system

conveniently, interactive specification editor can be used.

VI. Conclusion
In specification of development environment, it is required to capture
information about behavior and constraint as well as structure. But current meta
systems that are based ER model or EER model can specify only structural
characteristics supported by ER model or EER model., And they should be more
intelligent than now. '
This paper proposed a new meta model that is based on logic and object-oriented
approaches to surmount drawbacks of ER based meta systems. LOOM (Logic and

510

Object-Oriented approaches based Metamodel) has combine object-oriented model with
logic to utilize both benefits. In our approach, specification of development
environment are described by the use of LOOM, Then specification is translated into
Prolog clauses. And this specification Prolog clauses are analyzed.

The contributions of this paper are as follows.
First, for behavior and constraint, LOOM 1is more expressive than ER based
metamodel.
Second, checking their syntax grammar, specifications can be automatically
translated into Prolog clauses.
Third, by the use of logic, deductive capability is extended on analysis/query
about specification of development environment.

We expect that the concept of enhanced meta system should contribute to develope
domain dependent specifications and manage them into a unified view.

511

