based on the expected cost is reasonably robust to small changes in the
parameters of the prior distribution.
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X-Bar and R Charts for Skewed Populations

X|ol4 (KAIST Atei=&tat
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This paper proposes a heuristic method based on a weighted
variance (WV) concept in setting up the control limits of X-Bar and R
control charts for skewed populations. This method provides asymmetric
control limits in accordance with the direction and degree of skewness
estimated from the sample data by using different variances in
computing the upper and lower control limits. For symmetric
populations, however, these control limits are equivalent to those of
Shewhart control charts. The new control charts are compared with
Shewhart control chart by a Monte Carlo simulation when the underlying
populations are normal and Weibull, and are found to provide better
performances than Shewhart control charts as skewness increases.
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Using Variance Reduction Techniques
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I. Introduction

Let us consider a process that produces some items sequentially. Suppose that
these items have measurable values attached to them and that when the process
is "in control" a sequence of these values, Xj, Xs,-+-, come from a probability
distribution F(-). Let Sy=0 and define

Si = maz(0, Siq+Xi—k), i>1,
where k is given. The quantities S; are cumulative sums of the successive
quantities Xj—k which are not allowed to become negative. That is, the value of
the cumulative sum is reset to zero whenever it would fall negative. Usually we
choose k so that the values X~k have a negative mean when the process is in
control. Therefore the cumulative sum will normally have a small value in this
case and a large value is an indicator that the process may have gone out of

control. However, since large values will eventually occur even when the process
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remains in control, we are interested in estimating ©=E[N]where

N = min(i: Si>h), (1)
for some constant k. EfN]is the expected time until the process is mistakenly
declared out of control when in fact it remains in control throughout. We often
call E/N]the average run length (ARL).

Many authors have. proposed various methods to evaluate ARL's for CUSUM
schemes. Page [4] originally derived an integral equation whose solution gives
ARL's for one—sided CUSUM schemes. Goel and Wu [1] obtained approximate
ARL's for the normal case using ratios of numerical solutions to two integral
equations. Lucas [3] used a Markov chain approach to obtain approximate ARL's
for the exponential case. In general, however, obtaining ARL's analytically is a
difficult task. Therefore we often use simulation.

Since the raw estimator of E[N]is just N, given simulated data from the r
runs of simulation N;, Na,--+, N, E[N] can be estimated by the sample mean

=YNi/r and Var/N] by the sample variance sI%:E(Ni%N)2/(r—1 ). The raw
simulation is easy to follow but it might need a large number of simulation runs
to obtain an accurate estimate.

In this paper, we propose efficient methods to obtain the ARL of the
one—sided CUSUM scheme through simulation by using variance reduction

techniques.
I1. Controlled Estimator

We can improve the raw simulation estimator N by using the method of
control variate if we find some variable Y (called a control variate) which is

highly correlated with N and whose mean E[Y]is known. For any constant a, the

controlled estimator is given by
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N(a) = N + o(Y-E[Y]).
Then the best value of  which minimizes Var/N(a) /is
a* =~ Cov[N,Y]/Var[Y]
and the variance of N(a) at a* is
Var[N(a*)] = (1-R,. ) Var[N] (2)
where R, =Cou[N,Y[/{(Var[N]Var[Y]”2 is the correlation coefficient between N
and Y. The above (2) tells us that we could reduce variance of the raw
simulation estimator by using a controlled estimator. For more details on control
variates method, see Lavenberg and Welch [2].
Ross [5] suggested using the total hazard as a control variate. The total
hazard for a Markov chain {S;, i>0} and a given set of states B is defined by
N
Y= 5
where Aj=P(N=i| Sp,---, S;i.1) and N=min(i>0: SieB). Aj's are called random
hazards. Ross also showed that
E[Y]=P(N<w) = 1, (3)
which indicates that Y could be utilized as a control variate.
In order to find a control variate (total hazard) for our CUSUM scheme, we
first evaluate the random hazard at time i, Aj, by
A; = P(N=i| Si-)
= P(Si>h| Sj4)
= P{X> —(Si1~k—h)}
= Fe(k+h—S;i.q),
where Fe(.)=1-F(.).

Then we can use the sum of the random hazards, Y,

N
Y= 3 Fe(kth—Si) (4)

as a control variate and propose the following controlled estimator of the ARIL:
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N(a) = N + a(Y-1),
where a=—Cov/N,Y]/Var[Y]which needs to be estimated.
Given a sequence of r pairs of simulated output (N, Y1), (N2, Ys),- -+, (Nr, Y2},
E[N] can be estimated by the sample mean of N( 21):
o, =N+ a(Y-1), (5)
where ;z is given by
a=- ENY; - 'NY)/EY2 - 77,
The variance of the hazard controlled estimator (5) could be estimated by
V;U‘[él_/——— s2(1 - RI?IY)/T (6)
where s is the estimate of Var[N]and RNY is the sample correlation coefficient

between N and Y.
II1. Ratio Estimators Using a Cycle

Let us define a cycle to occur either when Sj exceeds h or when it returns to
zero, and let C denote the length of a cycle. That is,
C = min{i: Si=0 or S>h}. (7)
Then the ARL can be obtained by
E[N] = E[C]/p,
where p=P{5,2h}. We need to estimate E[C]and p in order to obtain E[N]
In this method we only need to simulate quantities during a cycle. That is,

we consider that a single simulation run be completed when a cycle ends.
1. Estimation of E[C]

The total hazard during a cycle C'is obtained by

C
4 = _21[P{Si2h| S} + P{S;=0| Si1}]
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= igll{Fb(lc+h—£»‘i_1) + F(k—-Si4)} (8)
Since EfZ]=1 (according to the same line with (3)) the following controlled
estimator for E/C]are obtained:

Cla) = C+ a(Z~-1),
where a1=-Cov[C,Z]/Var[Z]

We could also obtain an estimator improving upon the raw simulation
estimator C by using a stratified sampling. Conditioning on whether C=1, or
not, E[C]can be evaluated by

E[C] = E[C|C=1]q + E[C|C>1](1-q)

= g+ (1-g)B[C| C> 1]
where ¢=P{C=1}=F(k)+Fc(k+h) and E[C|C>1] remains to be evaluated by
simulation. Let C’=C|C>1, then use

C7=q+ (1-¢)C’ (9)
as an estimator of E[C]

Furthermore, we could improve C” by using Z’ (=2 | C>1) as a control
variate when estimating E/C’]in (9). That is, use

C7(a2) = q + (1-9){C+ar (2~ E[Z’))} (10)
where ay=—Cov[C",Z’]/Var[Z’] and E[Z’]=1+q¢.

2. Estimation of p

Let us define an indicator variable I as follows:

i 1 if SCZh
0 otherwise.

Since EfI}=p, the raw simulation uses Just I as an estimator of p. In this section,
we propose some other estimators which could improve upon the raw simulation

estimator I
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C
Since E[‘ElAi J=p, p can be estimated by the sum of the hazards of N
l:
during a cycle, @, which is
C
Q=X A;
1=1
C
= § Fe(k+h=5i1) (11)
We can imprqve upon the hazard estimator Q by using a stratified
sampling. Since
E[Q] = E[Q| C=1]q + E[Q| C>1](1-g)
= gFe(k+h) + (1-¢)E[Q| C>1],
p can be estimated by
Q" = qFe(k+h) + (1-0)Q’ (12)
where Q’=Q|C>1.
We could further obtain a better estimator of p by controlling @’ in (12)
via the control variate Z’used in (10). In this case, we have
Q(br) = gFe(k+h) + (1-9){ Q+bi(Z~E[Z)} (13)
where bj=—Cov[Q’,Z’]/Var[Z’]

3. Ratio Estimator of ARL and Its Variance

We suggest using (10) for estimating E/C/and (13) for p. Suppose that V
is an estimator for E[C]and W is an estimator for p. Suppose also that we have
m pairs of simulation output (Vi, W), +,(Vn, Wn). Then the classical estimator
of the ratio E[C]/p (=0) is

6=V/W. (14)
Since § is biased, the following mean squared error (MSE) will be evaluated for

its performance:

MSE(6) = E[(6-0)?]. (15)
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We employ the bootstrap approach as described in Ross ([6], PP. 107-108) to

estimate the MSE.

IV. A Comparison of Methods for Exponential Case

The performance of the hazard controlled estimator and the cycle estimator
proposed in the previous sections will be compared against the raw simulation
estimator when the underlying pfocess follows the exponential distribution with
mean 1. Estimated variances of the estimators (MSE for the ratio estimator) will
be compared with each other for several combinations of % and A.

The number of simulation replications is 1000, where each replication lasts
until NV is realized (i.e. Si>h). Obviously each replication consists of one or more
cycles defined earlier, and therefore the number of observations for the cycle
estimator would be much larger than that for the raw or hazard estimators. To
estimate MSE for the cycle method, we generate 200 bootstrap samples. The
simulation procedures are following:

1) Generate simulated output: MNy,---,N; from (1), VYi,---,Y, from (4),

Ci,- - +,Cn (m is the total number of cycles) from (7), 21, +,Zy from (8),
and @, - -,Qn from (11).

2) Compute each estimator: i) hazard estimator by (5), 1ii) to obtain the
cycle estimator, first calculate (10) and (13) (here as and b should be
estimated first). Let Vand W be the average of (10) and (13) over m
values, respectively. Then the cycle estimator is obtained by (14).

3) Estimate variance of each estimator: use (6) for the hazard estimator
and (15) with bootstrapping for the cycle estimator. (We also have
experiments to estimate the MSE of the hazard estimator using

bootstrapping and find that its MSE is almost identical to the estimated
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variance from (6).)

The results of simulation are summarized in the Table 1. Variance ratios (last
two columns) are obtained by dividing the variance of the raw estimator by that
of the hazard (or cycle) estimator. As shown in the table, the hazard and the
cycle estimators give us much smaller variance than the raw simulation does. In

general, the cycle estimator performs better than the hazard estimator.
V. Concluding Remarks

We may have some computational burden when the cumulative distribution
function F(-) cannot be easily evaluated. In this case, we suggest using
numerical tables instead of evaluating F(-) by integration or summation. On

the other hand, if the process follows some empirical distribution, our techniques

can be easily applied.
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Table 1. Simulation Variances of ARL Estimators

Variance of Estimator Variance Ratio
(vs Raw Estimator)

k ARL

Raw Hazard  Cycle Hazard Cycle
0.5 2.54 0.00408 0.00005  0.00002 86.8 204.6
1.0 431 . 0.01565 0.00005  0.00002 300.5 716.9
1.5 7.21 0.04654 0.00007  0.00002 675.8 1886.5
2.0 12.01 0.11066 0.00006  0.00003 1738.9 4244.8
2.5 19.91 0.33168 0.00007  0.00002 4688.7 16667.3
3.0 32.94 1.02665  0.00006  0.00002 17964.0  50325.7
0.5 3.51 0.00745 0.00051  0.00031 14.6 23.7
1.0 6.39 0.03357 0.00077  0.00036 43.6 93.5
1.5 11.18 0.09580 0.00080 0.00044 120.2 218.4
2.0 19.09 0.29419 0.00087  0.00041 339.4 711.3
2.5 32.11 0.89840 0.00086  0.00036 1039.6 2495.2
3.0 53.60 3.10396 0.00092  0.00039 3364.9 8061.0
0.5 4.50 0.01137 0.00157  0.00115 7.2 9.9
1.0 8.97 0.06053 0.00392  0.00211 15.4 28.7
1.5 16.84 0.23017 0.00416  0.00260 55.3 88.5
2.0 29.87 0.77224 0.00476  0.00264 162.3 292.0
2.5 51.36 2.83776 0.00520  0.00267 545.3 1064.7
3.0 86.78 7.21764 0.00541  0.00226 1333.9 3193.9
0.5 5.50 0.01571 0.00340 0.00267 4.6 5.9
1.0 12.06 0.09895 0.01174  0.00896 8.4 11.0
1.5 24.76 0.52061 0.01675  0.01273 31.1 40.9
2.0 46.21 2.17266 0.02074  0.01212 104.8 179.3
2.5 81.63 6.45036 0.02200  0.01422 293.2 453.7
3.0 140.00 21.54582 0.02470  0.01064 872.5 2025.0
0.5 6.50 0.01953 0.00719  0.00608 2.7 3.2
1.0 15.64 0.16336 0.02891  0.02315 5.7 7.1
1.5 35.68 1.25932 0.05864  0.04808 21.5 26.2
2.0 70.77 4.74412 0.06463  0.04539 73.4 104.5
2.5 129.10 18.16911 0.08127 0.04942 223.6 367.7
3.0 225.40 49.70991 0.08395  0.06192 592.2 802.8
0.5 7.50 0.02246 0.00969  0.00909 2.3 2.5
1.0 19.72 0.32321 0.06372  0.06338 5.1 5.1
1.5 50.65 2.50344 0.18998  0.15733 13.2 15.9
2.0 107.60 11.95971 0.22912  0.22778 52.2 52.5
2.5 203.60 41.55061 0.25744  0.19022 161.4 218.4
3.0 362.30 135.20432 0.22402  0.18683 603.5 723.7
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