A Knowledge-Based DSS for the
Decision Making under Multi-Objectives
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1. Introduction

Multiple objective linear programming (MOLP) has been of much research interest and
resulted remarkable development over the past two decades [Hwang et. al., 1980; Evans,
1984; White, 1990; Shin and Ravindran, 1991].

The most efficient and widely employed MOLP methods take the two component
structure. The first, the analyzer, is concerned with the identification of a possible or a set
of possible nondominated solutions of the MOLP problem. And the second, the preference
eztractor, tries to induce the preference structure of the decision maker (DM) from the
interaction with the solutions obtained by the analyzer.

While the tasks involved with the analyzer are well—posed both in analytical and in
applied aspects, the same does not occur with the preference extractor. This is essentially
due to the lack of a general agreement on how to employ the mathematical programming
theory in order to allow the DM to express his preferences in a proper way. Considering
the criticality of the DM’s response in solving MOLP, a DSS approach is rather essential to
help DM in expressing his preference and solving the problem.

Multiple Criteria Decision Support System (MCDSS) are considered as a specific type
of system within the broad family of DSS [Jelassi et al., 1985]. Even though MCDSS
include much the same components as traditional DSS, MCDSS have special characteristics
that distinguish them from other DSS : 1) allow analysis of multiple criteria; 2) use a
variety of multiple criteria decision methods to compute efficient solutions; and 3)
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incorporate user’s input in various phases of problem solving.

In this paper, we introduce a MCDSS ASEOV—VIM which has the foliowing three
components: 1) ASEOV presents the overall structure of the efficient solutions and the
candidate goal for the search direction; 2) VIM presents the efficient trajectories along the
search direction and acquires DM’s preference information; and 3) Mediator plays the role
of knowledge based interface between the two components, to enhance the role of each
component and to guide DM through the decision making process. Menus and interactive
uses of computer graphics play a central role in ASEOV—VIM. ASEOV—VIM is written in
TURBO-C and implemented on an personal computer. An illustrative Example is
provided.

II. Approximation of the Set of Efficient Objective Values

In this section, we introduce subsystem ASEOV ( Approximation of the Set of
Efficient Objective Values ) to systematically approximate the set of efficient objective
values, let it be denoted by N, in general p—dimensional objective linear problems. With
the initial approximation error allowance, which can be under the control of the DM,
ASEOV can present DM with the overall structure of N without DM’s any burden. And
this insight over N will make DM easier in assessing his own preference to find out the final
best compromise solution, rather than given with just some subset which does not represent
the whole N. A new way of determining the maximum approximation error of a given
approximate of N, using the Tchebycheff metric, is introduced. By handling on the linearly
transformed objective set Y directly, the unnecessary computational efforts at the extreme
points of X which are transformed to nonextreme points of Y are reduced, increasing the
computational efficiency as a result.

The MOLP can be stated as
zMng fz)=(flz) -, fo(z))
where X={z:z€ Ry, Az<b, 2> 0, where Aisa mx n, and bis a m x  matrix }.
Let,
Y=f(X)={f(z): f(z) € R», z€ X},
N={f(z): f(z) € Y, zisefficient },
and Nex = { f(z): f(z) € Nand f(z) is an extreme point of Y }.
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Since f(z) is a linear transformation from Rn to Rp, Y= f( X)is a polyhedral set in
Rp for every polyhedral set X ¢ Rn. And every polyhedral set is the intersection of finite
collection of hyperplanes, there should exist G and g, such that Y= f( X)={y: ye Rp,
Gy<g, where Gisam’ x pand gisa m’ matrix }.

Let IdE (3° ) denote the indices of the face hyperplanes of ¥ which contain at least one
of the efficient edges incident to any 0 = f (2°) € Nex.

Definition linear manifold ME (y°)
For any 3 € Ny, let the linear manifold ME (%) denote the set of { ye Rp: G; y =
gi, 1€ IdE (3° ) }, where Gj (or g;) represents the i th row vector (element) of G (g).

That is the linear manifold ME () denotes the intersection of the face hyperplanes, of
Y which contain at least one of the efficient edges incident t0 3° € Ney. Then every
efficient edge of Y incident to 40 is contained in ME ( 1 ) by the definition. This assures
that every efficient extreme point and edge of Y are contained in n; { ME (i), where ¢i €
Nex }.

For any 3° = f(20 ) € Nex, an adjacent extreme point of 3° need not be the image of an
extreme point of X that is adjacent to z0 € X. This collapsing effect [ Dauer, 1987; Dauer
and Liu, 1990 ] shows that handling directly on objective space can save some
computational effort in determining the efficient reduced cost coefficient vector for any. ¢
at the given efficient multiobjective simplex tableau T (20 ). That is, it can reduce the
number of extreme points of X which need to be analyzed.

Theorem [ Dauer and Liu, 1990 ] — Edge Test

Let i = f(2° ) € Nex and let R = ( ri,.., 2 ) be the reduced cost coefficient matriz in
the corresponding multiobjective simplez tableau T (20). Let Ei be the edge of X determined
by column jin T (2° ). The image of Ei under fis contained in an edge of Y if and only if ri
is in a frame of cone (R).

Remark

For any 90 = f(2° ) € Nex, an edge of Yincident to 1° can be represented by ¢ + d- i,
0 < d < Aj, where Aj is the corresponding minimum ratio scalar at T (2* ) [ Bazaraa and
Jarvis, 1977 ] and if i is not redundant. By the edge test, the collapsing extreme points of
X adjacent to 20 are identified. And this will reduce the unnecessary computational effort
of further analyzing at those points.
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And, in order to determine the efficiency status of any ri which is in a frame of
cone(R) at a given efficient multiobjective simplex tableau T (2° ), we use the Efficiency
Test.

Theorem [ Ecker and Kouada, 1978 | — Efficiency Test
The edge Ei of X determined by the j th column of an efficient and nondegenerate
tableau T (2°) is efficient iff there is a A > 0 such that AtR < 0 and Atri = 0.

This method requires neither linear programming subproblem to test the efficiency of
each incident edge, nor bounded X. And even the degenerate X can be handled [ Ecker and
Kouada, 1978; Dauer and Liu, 1990 }.

When the frame of cone(R) and efficient ri’s of y0 = f(2° ) € Nex are determined, we
can get a manifold ME (3°), which intersectively comprises N. ASEOV approaches"to
determine the minimal subset of Ny, let it be denoted by INgx, and the corresponding
manifold ME ( yi ) for each yi € INex. And the intersection of these manifolds, n; { ME (
yi ), where yi € INgy }, which is an upperbound of N, is used as an approximate of N. This
approximate contains the sparse representative subset of N under certain allowance. As
the set INgy grows, the approximate of N will get closer to real N and the approximation
error will decrease.  The algorithm ASEOV determines minimal INex of which
corresponding approximation error is under given allowance. '

The Tchebycheff Metric and the Approzimation Error

Some of the extreme points of this intersected manifold, i.e. the approximate of N, for
any INgxy C Nex are infeasible to X. These infeasible—to—X extreme points of given
approximate of N are used as the reference points, where each approximation error is
measured. And the maximum approximation error at each approximation stage is
determined as the maximum of the approximation error computed at every reference point.

We use the Tchebycheff metric to measure the approximation error at each reference
point. That is,
min «
s.t. azkgf(rfi —fi(z)), 1<i<p, 1z€lX
where rf; represents the i th objective value of a reference point rf This problem finds out
the closest point on the face of Y directly, from the reference point in the direction of A,
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The direction vector Arf used in the above problem is given as the average of the outer
normal vectors of the face hyperplanes of Y where the reference point rflies. Let Idr ( rf)
denote the indices of those face hyperplanes, for any reference point rf That is, Gi- rf= g;
iff 4 € Idr ( rf). Then the above problem can be considered as determining the averaged
deviation for each criterion, i.e. Avg( A f (z)), between the reference point rfand every
point y which lies on any currently unknown face hyperplanes of Y whose outer normal
vector is represented by a convex combination of Gi’s, 1€ Idr ( rf). Let the solution of the
above problem be z". Then, our approximation error estimate is computed as rf— f(z7).
For easy comparison, these values will be converted into the % deviation for each criterion
as

A

maz  f.(z)— min fi(z) .
z €eX z €X
When the DM is more concerned about certain objective criteria, he can assign different

allowance for each criterion.

III. Visual Interactive Method

Visual interactive method (VIM) is one of the recent popular approaches in solving
MOLP. VIM is employed for the easy elicitation of DM’s preference by displaying the
efficient frontier of the improving direction [Winkels and Meika, 1984; Korhonen and
Laakso, 1986].

There are several techniques for generating efficient solutions depending on the
different methods to scalarize the multiobjective decision making (MODM) problem. The
achievement scalarizing function is one of them [Wierzbicki, 1980]. The achievement
scalarizing function used in this study is

S(¢, A=), A) = max; {X, (¢;~ f{z))} - ¢ FP_, f(z)
where € is a very small positive scalar, ¢is a given reference point in objective space,

and X is a given weighting vector.

The reference point may or may not be feasible. An achievement scalarizing function
S(¢, £z ), ) is one that projects the reference point gonto N. The projected point in Nis
defined by the objective vector that lies on the lowest valued frontier of S(g, fz), A) that
intersects Y. Such an objective vector is obtained by solving the achievement scalarizing
program
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min { $(¢, {z), A) | z€ X}
Now, MOLP can be converted to the following achievement scalarizing program.

min {a—e3_, f{z)}
st. flz)+afr;2q, i=1..,7
ze X
in which a € Ris, in general, unrestricted in sign.
To project onto N an unbounded line segment y(g,d) that emanates from ¢ in the
direction d, we solve the achievement scalarizing parametric program

min {a—¢ Elgzl f{=z)}
s.t. fz(z) +afA;2 g+ 0-d, i=1.,p
ze X .
for @ going from 0 until the solutions of the above program exist on the efficient facets. The
step—size 0* is determined by selecting a preferred solution from the projected trajectories
of efficient solutions. The weighting vector X takes as the vector ( F*(z) — (g+ 9)/2).

IV. A Knowledge—Based Interface Mediator

One of the evolving problems of the interactive MOLP methodologies is the
inconsistency from the DM’s replies. The inconsistencies of DM may cause much problem
in interactive methods, since whether the procedure is progressive and convergent depends
mainly on the capabilities of DM. However there is not any clear solutions to this
drawback yet.

The opposite case of inconsistency is when the number of alternatives, candidate
reference goals or efficient extreme points to investigate, presented to DM are too large.
From the human psychological viewpoint, the number of proper capacity (alternatives) to
process (selection) is 7 + 2 [ Miller, 1968 |.

In this section we propose a knowledge—based interface between ASEOV and VIM,
called Mediator. The Mediator will' act as a multi—criteria decision analyst. The role of
Mediator is to interface between these two components, emhancing the role of each
component and finally deduce properly satisfied solution.

The aim of Mediator is to maximally utilize the DM’s preference information provided
from his replies, with minimum burden to DM. In the context of extended DSS, it is
required to develop a system based not only on a set of methods but also on knowledge
about usage of the methods and their possibilities. From an operational point of view we
tried to build a type of intelligent (or so—called 'knowledge—based’) interface between the
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MCDA methods and a user who is not familiar with these methods. The peculiarity of this
interface is that its knowledge base does not contain knowledge about a specific problem
domain, but consists of the elements of the methodological knowledge used in multicriteria
decision aid.

Determination of Search Direction

The search direction d(k) (k is the stage count) to find out the next better solution is
determined as follows. The currently determined elements of Nex and the infeasible—to—X
reference points will be used as the candidates for the reference goal g(k). As the
approximation proceeds the number of the candidates will grow. To reduce the burden of
DM and to maximally utilize the DM’s preference information, the dominance cone [Gal,
T. and Kim, S.H., 1992] is used to prescreen these candidate criterion vectors.

The dominance cone is constructed based on the DM’s preference information given in
selecting his preferred solution from the efficient trajectories by VIM. Let s say there are 5
breaking points ¢ in the efficient trajectories. If the DM has selected y not any one of
them, then it means U (y )> U(y"),i=1,.., 5. These will be transformed as w y ~wy
2e€ t=1,.,5.

This constraint set constitutes a dominance cone on obJectlve space, and is used to
pre—screen the candidate criterion vectors. And the goal g(k is determined as the ideal
point of those which passes screening. Then the search direction is determined as d(k) =
g(k) q(k) where q( is the current criterion vector.

V. A MCDSS ASEOV-VIM

The overall structure of the proposed MCDSS ASEQV—VIM is presented in figure 1.

‘ MOLP model |

[ AsEov e[ medisor |*[ vim |

I user interface ll
A
/
DM

Figure 1. The Structure of ASEOV—VIM
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The role of each component are as follows:
1) ASEOV plays the role of the analyzer. It presents the subset of efficient solutions and
candidate goals for the next search direction around where DM is interested based on his
preference information. Another characteristic of ASEOV is that it gives the overall
structure of N under given alowance which helps DM in assessing his preferences.
2) VIM plays the role of the preference extractor. It presents the efficient trajectories
along the search direction starting from the current solution and acquires DM’s preference.
The computer graphics play a central role in VIM.
3) Mediator acts like a multiple criteria decision analyst. The role of mediaor is to
interface among the above components and finaly deduce the properly satisfied solution.
And the user interface offers various menus and graphics to help the system user who is
not familiar with MOLP. Each component will be explained briefly with corresponding
result by the following example.

Consider the MOLP of table 1. The problem and the convergence of the solutions are
shown in figure 2.

Table 1. An Example Problem

max f,(x) 1
maxf’(x) 1
maxj;(x) i
1.7 18 9.7 100

v
-
<
—
w
)
IA
2

58 32 -15 350 Figure 2. The Problem and the Solutions

*
The ideal point of this problem is F (z ) = ( 9.9139, 9.5619, 9.9030 ). Let’s say the
utility function of the DM is a Tchebycheff function min maz i ( fi (z)— fi(z)) with
A=(.2,.5 .3). Then the optimum solution is ( 3.7810, 7.1087, 5.8164 ).
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1) ASEOV : The initial approximate of N after ASEOV is shown in figure 3 (a). There are
14 currently determined elements of N.y and 12 reference points.

0 I

Figure 3. Approximate of N with Reference Points at (a) stage 1 and (2) stage 2

2) Mediator : As there is no preference information, Mediator sets q(l) = F‘I*(z) = (
9.9139, 0.0000, 3.0001 ), &) = F'(2), &) = () _ (1) _ (g.0000, 9.5619, 3.9047 ), and
2D 2 By — (D + jl))/z = (0.0000, 4.7810, 1.9530 ).

2) VIM : The efficient contour presented to DM by VIM is shown in figure 4, an example
screen of ASEQOV-VIM. '

1001{[7‘) 9.9; 9.6 2.9
.......... .. =
80 “h 7.9 7.6 7.9
: « N o
R
. . [ ] ]
60 e P ) 5.9 E 571} sy
O 1Y r v
K 1 ] g
« F 4018  ast!  aof!
e N, 8 2 2
"""" ~ [} 0 0
20 : 2.0 1.9 2.0
0k -
0.0 0.91.4 1.5 2.4
Current Value: X = 2.382 File Load
¢~ - Objective { = 3.520 Trace
Home L] Objective 2 - 6.518 Set aspiration
Esc to stop Objective 3 = 6.866 Viewing size
Quit

Figure 4. An Example Screen of ASEOV—VIM
There are four windows shown. The window (a) shows the efficient trajectories along
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the search direction with the relative achievement (in %) of each criterion. The window
(b) shows the real range of each objective value ( min fi(z), maz fi(z), and some middle
point values ). The window (c) shows the value of each criterion at a selected point. And
the window (d) shows the available menus at the given circumstance. By selecting the
menu "Trace", the user can follow the given efficient trajectories by controlling the left and
right arrows. The vertical dotted line moves along the trajectory and the user can see
value of each criterion at a selected point. The menu "Set Aspiration Level" is used to
assign the aspiration level for a criterion or more if DM wants. The assigned aspiration
level with the selected objective criterion will be returned to the original problem as
additional constraints, like fi(z ) > certain value. And the "Viewing Size" menu will be
used when DM want to see some portion of the given trajectories if he is interested and
want to see more carefully some specific region. Let DM has selected point ( 3.5305,
6.5224, 6.8626 ) as the best of them.
4) Megiator : _Based on the DM’s preference information, dominance cone is sonstructed as
w(y — y' ) > 0. After screening point 2,4,25,29 remain. It informs ASEOV to
investigate around these points.
5) ASEOV : Figure 3 (b) shows the approximate N at stage 2 with more elements of Nex
and some new reference points.

By this way the solution is improved. Table 2 shows the solutions and the converging

rate.
Table 2. The Convergency of the Solutions
teration (% deviation from optimum)
I ) 9.9139 7.1087 5.8164
q (+162%) (-100%) (48.4%)
) q? 35305 65224  6.8629
(-67%) (-83%) (+18.0%)
2 @ 35474 73905  5.6607
q (-62%) (+4.0%) (-2.1%)
optimum 3.7810  7.1087  5.8104
V1. Conclusion

A multi—criteria decision support system ASEOV—VIM has been developed. By

276



integrating the three components, ASEOV—VIM can be a good decision aid for the large
scale complex MOLPs. The menus with the graphic interface helps DM who is not familiar
with MOLP. The subsystem which helps the modelling of MOLP is not implemented yet,
which can be of interest for the further research.
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