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I. Infant mortality

Historically, the bathtub curve has been used as a failure rate
model with great popularity owing to its physical implication.  The
curve is composed of three phases with different characteristics,
i.e., infant mortality, steady-state, and wearout phase as shown in
Figure 1-a. Infant mortality phase is characterized by an initially
high but rapidly decreasing failure rate. This is because of the
existence of weak parts in the system, which will cause failure
within a short period of operation. In the steady-state phase,
initial weak failed parts have been replaced already, and hence
further failures occur at a much lower rate. The failure rate
remains constant or at the most changes very slowly. After a long
period of operation, wearout phase starts and failure rate
increases monotonically.

However for most of the electrical systems, the life time is
so long that the wearout phase is hardly observed in the field. The
constant failure rate makes the model for the steady-state phase
simple, though its consistency is being severely criticized
recently[3]. To understand the behavior during the steady-state,
we heavily depend on various accelerating life test methods as an
important source of information. Often this has been the only
useful tool as the system becomes more and more reliable.
However, it is still a difficult job to have a fairly good estimate of
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the constant failure rate considering the long steady-state period
of operation. In the auther's opinion, it is rather more pratical and
intuitively correct if we estimate the constant failure rate from
the infant mortality model.

As we note, the failure rate is decreasing monotonically
early in the operating period. Hence, if we observe any time t such
that the decreasing failure rate at t is smaller than a small
predetermined value, we prefer estimating the constant failure
rate for the stady-state phase with the failure rate at t. It may be
also possible to decide the time t from the field experience.
Bellcore[1] suggests 10,000 hours or 1 year of operation.
Following this strategy, two points are worth of mentioning.  First,
we can have a conservative failure rate during the steady-state
phase. Secondly, the constant failure rate will be more effectively
estimated because it is being based on actual failure data. It is
pretty much possible to keep a tract of the real failures during the
relatively short period of early operation. It is our belief that if
the above mentioned strategy is supplemented by the information
obtained from the accelerating life test, we will have a better
prediction for the long steady-state phase.

The idea of wusing the infant mortality for predicting the
failure rate during the steady-state phase implies that the
identification of the correct model for the infant mortality is very
critical and important. As an infant mortality model, Weibull, log-
normal, gamma, or any other model with decreasing failure rate
can be a typical approach. But the Weibull model is the most widly
used one. The Weibull failure rate can be expressed as

ity = PBt®-1 (1)

As noted in Figure 2, r(t) is decreasing, constant, and increasing
according as O<a<l, a=1, and 1l<a respectively. In the next

section, we suggest a simple statistic to identify the weibullness

vis-a-vis a complete set of lifetime data.
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II. Test of fit for the Weibull model

Gnedenko, et al.[2] states two reasons for the popularity of
the Weibull family as a life time model.  First, it generalizes the
popular exponential distribution family. Considering the positive
power of life time data, we have more room for better fit between
data and model than we have with the exponential family, which is
characterized with a constant failure rate. Secondly, the Weibull
family has theoretical legitimacy as a limiting distribution of the
lifetime of a system. Even though the convergence rate is found to
be slow, if the system is composed of a large number of
independently working components and if it fails when one of the
components fails, the Weibull model is the only one we can
conceive. Even the life of a system with a relatively small number
of visible components is conceived to be limited by a large number
of molecular-size elements.

The probability density and the distribution function for the
Weibull family we are considering are

f(x: o, B) = Pa(Bx)® lexp[-(Bx)*] 2)
F(x: o, B) = 1 - exp[-(Bx)%], (3

where x>0, a>0 and B>0 which are referred to as shape and scale
parameters repectively. Note that o=1 leads f(x) to exponential.
When we have lifetime data, often more convenience is achieved
statistically and numerically if we consider logarithmic
transformatin of the original data. Suppose X is a random variable
arising from the lifetime data with the probability density
function f(x: o, B) of (2). Then its logarithmic transformation Y =
In X, leads to a new density and a distribution function

1 . -
glyub) = o expl’ - exp(o)] @)

ene) 5)

G(yiub) = 1 - expl-exp(*
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where u = In B
with - o <u< o, b>0 respectively.
value distribution.
variance

E(Y) =u- Yb
Var(Y) = n2b?/ 6,

where Y is the Euler constant

with 0.57721--- .

and b = 1/a are the location and scale parameters
This distribution is called extreme
The extreme value distribution has mean and

(6)
(7

Further it has a

constant skewness
H3
K=0_3 = 1.3, ®)
where p3 and 63 are the third central moment and the standard

deviation repectively.
skewness statistic,

corresponding unbiased sample statistic

n n w3
" S D@y ZiY
n
S(xi-%2) 1/2
i=1

Then, to test the weibullness of the data,
recommend is

A

TAU = (“%3 - 1.3)2
O

K, simply by substituting

From the skewness, K, we obtain the sample

L3 and © with the

(10)

(11)

the statistic we

(13)

It is clear that TAU will be positive and closely located to O under

the null hypothesis.

random lifetimes, first we take
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calculate the TAU statistic. Secondly, if TAU is far from 0, we
reject the weibullness. In order to decide how far the TAU could be
allowed from 0O for its acceptancy, we tabulate the critical values

through the Monte Carlo simulation. Table 1 shows the critical
values for the significance level of 0.01, 0.025, 0.05, and 0.1 for
the sample sizes of 10, 12, 15, ---, 120.

Table 1. Percentage points for TAU

sample size probability
n 0.90 0.95 0.975 0.99
10 2.511 3.360 4.130 5.250
12 2.256 2.950 3.631 4.7717
15 1.951 2.537 3.123 3.898
20 1.632 2.142 2.683 3.266
24 1.467 1.910 2.342\‘ 2.984
30 1.272 1.676 2.046 2.575
40 1.086 1.380 1.773 2.382
60 0.811 1.038 1.306 1.869
120 0.540 0.713 0.921 1.364

In order to compare the effectiveness of the statistic TAU
with the existing ones, small power study was made against 6

alternative distributions. They are

1. N(0,1): exp(X), X has normal distribution with p.d.f

-1 X-H
f(x) = exprz—(—;‘)zl, u=0, o=1

2RC
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2. LOGISTIC: exp(X)., X has logistic p.d.f

f(x) = e X(1+e-x)-2

4. CAUCHY: exp(X), X has Cauchy p.d.f

11

f(x) = — 2
T 2

5.X2(1) : chi square with 1 degree of freedom

1
—_— v/2-1 _ - 1
f(x) = 2V2T (v/2) X exp(-x/2), v=

6. X2(4): chi square with 4 degrees fo freedom

1
- 2-1 - =
f(X) - 2V/2F(V/2) xv/ exp( X/2), v=4

5000 random sample of size 25 are generated from each
alternative distribution and values of TAU are calculated.
Comparing to the respective critical value with the significance
level 0.05, the portion of rejections is counted.  Since the critical
value for sample size of 25 is not readily available from the Table
1, interpolation is made with the two neighboring sample sizes of
24 and 30. The simulation result is shown in Table 2. The first 5
statistics are from Tiku and Singh[4] and J statistic from Won[5].
Even TAU behaves with bias for the alternative chi square
distribution with degree of freedom 1, the relatively high power
for other alternatives shows its usefulness as an identifier for the
weibullness of the lifetime data. However, the real power of the
statistic TAU lies in its simplicity for calculation.
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Table 2. Power of TAU for n=25

statistics

alternatives AZ T S Zw* Zw J TAU
N(0,1) 286 119 384 .392 404 412 437
LOGISTIC 376 207 427 466 470 497 464
DEXP 568 346 485 548 .524 518 497
CAUCHY 919 1.000 555 761 769 .874 756
X2(1) 094 091 018 .100 099 070 .030
X2(4) 058  .030 .102 .079 074 103 097
where A2 : Modified Anderson-Darling statistic

T : Smith and Bain's statistic

S : Mann, Scheuer, and Fertig's statistic

Zw*, Zw : Tiku and Singh's statistic
J . Won's Statistic

References

[1] Bellcore, Bell Communications Research Reliability Manual,
Special Report SR-TSY-000385, 1986.

[2] Gnedenko B. V., Yu. K. Belyayev and A. D. Solovyev, Mathematical
Methods of Reliability Theory, Academic Press, 1969.

[3] Mclinn J. A., Constant Failure Rate - a Paradigm in Tradition?,
Quality and Reliability International, V. 6, p. 237-241, 1990.

[4] Tiku M. L. and M. Singh, Testing the Two Parameter Weibull
Distribution, Commun. Statist. Theor. Meth. A10(9), p. 907-918,
1981.

[51 Won H. G.,Methodologies and Methods for Test of Fit of Some
Parametric Models, Ph. D. thesis, RPI,1988.

212



