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|. Introduction

This paper proposes a solution approach to scheduling problems with many constraints of
the following type:

ZX,‘J' Sy/( s iG/, /{GK
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We call the above type of constraints generalized variable upper bound (GVUB) constraints.
The variable y may appear in any number of constraints. Schrage [7] coined the name for a
single variable type constraint, a variable upper bound constraint (VUB) and developed an
algorithmic solution approach to the problem. We present a solution approach based on
factorization and extend it for more generalized problems. The factorization approach has
been successful in problems with generalized upper bound (GUB) type constraints [3]. This
research will focus on the analysis why the VUB type constraints are amenable to the
factorization approach and deal with implementation issues.

These types of constraints are frequently found in integer programming problems, such as
location problems, job shop and priority scheduling problems. Since the VUB type
constraints are most of the constraints in these problems, the success of any algorithm
depends on the effectiveness of handling these constraints both in terms of storage space and
solution time. Specific examples of these constraints in various models are listed in Section
L.

[I. Examples

Of the many models with VUB, the uncapacitated facility location problem is a
representative. x; is the fraction of location je J's demand supplied from facility ie 7, Vi

1s 1 if facility 7 is open and O otherwise. ¢;; is the related variable cost for supplying j's
demand from facility i; and />0 is the cost of opening the facility i.

The model formulation is:

Minimize X X ¢x,+ Z fy,

subject to E xu =1, /e J
xu <y, iel, je J (VUB constraints)
x;20, iel, jeJ
ve {014, ie L
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Note that the above model with VUB type constraints is a tighter formulation than the one
below

X x<ny, iel
-

Although the formulation gives us a strong bound but at the expense of solving larger
problems. This makes us to solve these problems with efficiency. Erlenkotter [2] developed
an efficient algorithm for this problem based on the dual characterization of the problem.

By introducing the following constraint into the model we generalize the model to
p-median problem [1].

Zyi Sp

where pis the maximum number of plants.

Another example can be found in a least deviation problem. In this problem we are to
find the coefficients of a regression line that minimize the maximum deviation (error) of the
fit. This also can be considered as a multi-attribute problem with g; being individual targets.

Minimize y .
subjectto X ax; =g +8,-8;
j

8 <y, iel (VUB)
d <y, iel (VUB)
Vi X 0., 3, =0.

Committee scheduling problems also contain VUB [10]. x is 1 if member j meets in
time slot kwith topic i; otherwise 0. y, being logical variable needed to assure that the
required number (n) of committee members must be met. Let p, be preference of member i
over J, k.

Maximize 212 :L %pijkxijk
subjectto T x, <1, je ke K
};xlﬁﬁ ny,, i€ I, ke K
JZ v, =1, iel
k

X3SV i€ 1, jEJ, ke K (VUB)
X Y€ {0,1}.

See Schrage [7] for other examples with VUB constraints.

16



VUB and GVUB type constraints are mostly found in scheduling type problems where
these constraints serve to enforce logical relations among variables or constraints. As shown
in the examples, one characteristic of this type of model formulations is that most constraints
are VUB type constraints. It is, therefore, imperative to take care of these VUB type
constraints in an effective way if we can ever solve these large problems. We propose an
approach to solve this type of problems using factorization which has shown good
computational results in large scale problems with many GUB constraints.

[1I. Solution Approach

The solution approach adopted here is primarily based on Graves and McBride's [3]
factorization approach. This approach has a merit of providing us a framework with which
we can devise a way to exploit the particular structure of the problems on hand.
Factorization has been successful in solving large scale LP problems with many GUB type
problems [3]. We will show that the factorization can also be applied to VUB type
problems.

HI.1 Factorization
Consider the problem

Maximize c¢x

subject to Ux<h (special constraints)
Lx<r (general constraints)
-Ix<0,

where U'is pxn and L is mxb. The U-type constraints are specially structured constraints.
After row and column permuted partition of U, L, b, r.and ¢, we have

- N

U G Ub, [U,U,U,D,

Ly L,Lyr = U, Uy, Uysb,

Cp &y G O,J Ly Ly,Lyr (1)
Ly Ly, Ly,
LG 660

After multiple exchange of constraints (block pivot), we obtain the factored tableau
corresponding to any particular row basis. (Note that in Graves' algorithm row basis are
used that is different from ordinary simplex method.) See Graves and McBride's [3] for
details.

The complete factored tableau is
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(i) '[I,fUHJUlen_lLu]Un‘l 'Ugllfgﬁ11_l UIQ[UQ‘UUAH_]AU] Un:[[;h‘%zAn—]’zT
(ii) [UzzﬁlnilLu‘Uzl]Un—l 'UzzAn_1 Uzs'Uz ll_l/:ﬂz hz’UzzA‘Jl—lﬁ
-ﬁ;1'1L”U“'1 ﬁ;l_l - ATl-lfa\;zA, A, (2)
[AZIE,L}_‘LH-LZI]UH_I _“TZIEIIJ Ay '-21:1-2112 ’72';(21/?1141’71
L [ErzAn‘an'Cl]Un-l 'sza(n'l E:;'EZAH-]AIZ 'EVO
where¢ ~
l/]\zz:Uzz’UuUn_lUm Uz_x:Uz}'Ulen.lUls ’
"il_l:LIZ—LllUll‘lUlz’ ‘Zfl’z:Ln'LnUn_lUw
4, =L22-L21U“"1U,2, /T;z:Lzz'LnUn—lUm
?g:cz Wy Un_lUm G=cyc, Uy ' U, (3)
hzzbz"UlenVIbl’
?1:7'1'L11U11_1b19 ,’:'zzrz'LuUu-]bl-

With knowledge of the partition in (1) and the original problem data, we can always
reconstruct (2) from U,, and 4, .

The algebraic representation of the factored tableau looks very complex, but it becomes
quite simple when the special structure of the U type constraints is exploited. For further
details, refer to the Graves and McBride's original paper [3].

[11.2 Factorization of VUB constraints

We now consider the case where the special constraints (U) are of variable upper bound
type. That is,

x;, <y, i€l jeJ

In general,

kZ:K Xy <b, el jeJ.

If K={1}, =0,
x. <y, iel, jel.

Y

We prove theorems that will be used for developing a solution approach. Assume U type
constraints are consisted of solely GVUB.
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Theorem-1. U is totally unimodular.

Proof. 0,1 matrices with consecutive 1's are totally unimodular [9]. By using this theorem
we indirectly prove that U is totally unimodular. Non-zero coefficients of ¥, variables can
always be arranged columnwise consecutively by varying j indices first. Variable X,
appears only once in the constraints. Therefore U type constraints matrix can always be
rearranged as consecutive 1's or -1's. -1's cause no problem. This can always be handled
through variable transformation. Q.E.D.

Proposition-1. U, is either an identity matrix or an identity matrix with one or more
columns replaced by coefficients of y,.

Proof. U,, must be non-singular for U,, being existent. Rows of x,; are disjoint, that is,
columns of x,, are singletons and not empty. When U,, consists of solely coefficients of X,
U, must be an identity matrix, otherwise singular for having identical columns and null
row(s). Wheny, enters U, and replaces a column, any one of x,, with same 7 in U,, must
be replaced by it. Otherwise null row entries results, therefore singular. Q.E.D.

Theorem-2. Every row of U, has at most two nonzeroes (either +1 or -1, or +1 and -1)
elements.

Proof. Since x;, columns are singleton, no x,, with same i, k indices can enter U,, otherwise
singular as proved in Proposition-1. y, columns are disjoint among themselves. Therefore
every row in U,, has at most two non-zero elements, one from an X,; column and the other
from y, column. Q.E.D.

Using Theorem-2 we prove the following main theorem. Without loss of generality we
can assume that after column permutation we maintain no diagonal element in U,, 1s zero.

Theorem-3. U,, is periodic of period 2, that is U, > =I.

Proof. Diagonal entries of U, are either +1 or -1.

For diagonal elements in U,,* : For rows in U,, having only one element in their rows
produce 1's in their diagonals of U,;* since they are with the same sign. For rows with two
entries (+1 and -1), the diagonal element in Uy, 1s always +1 with column singleton therefore
the diagonal of U,,” is always 1.

For off-diagonal elements in U, *: Singleton rows do not produce off-diagonal elements in
U,,® since these are in diagonal. Rows having two non-zeroes always have opposite signs.
Columns having off-diagonal elements have all same (minus) signs. Therefore the resulting
inner products for off-diagonals always vanish. Q.E.D.

Theorem-3 proves that we do not need to compute U,,". Instead we can use U, for U,
in the factored tableau. Recall that U,, in GUB LP is an identity matrix, therefore the
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tableau becomes simplitied. This property is attributed to the effectiveness of the
factorization approach to GUB.

Notice that in (2) and (3) U, always comes with the form of either U, Uy or U, Uy,
We now consider the way to generate these products efficiently. Let U,, denote either U, or
U,

Theorem-4. U, 'U,, is constructed from U, by replacing every singleton column of U, by
corresponding &-th column of U, where kis the row index of 1 in the singleton column.

Proof. Post-multiplying U,, by a singleton column U, is equivalent to selecting a column of
U,,. If the column of U, is not a singleton column then it must be the coefficients of y,.
Since coefficients of v, are columnwise disjoint, rows of U,, corresponding to non-zero y,
rows have only one entry (i.e., 1) at their diagonal (Recall that U}, as permuted to have
non-zero diagonal elements). Therefore pre-multiplying U,," has no effect on U,,. Q.E.D.

Due to Theorem-4 it is possible to construct U,,"U,, by maintaining column indices of
U,, and U, without going through the actual computation.

V. Implementation Considerations
IV.1 Reducing Explicit Part of the Tableau

Assuming all U-type constraints in (1) are transformed to equality constraints after adding
slack variables, then the rows labeled (i) in (2) will vanish. Upon block pivoting on these
equality constraints at the very beginning of the algorithm, the columns labeled in () are no
longer needed to carry since pivoting on these columns again would violate the equality
constraints. The size of the factored tableau needed to carry out the algorithm, therefore, can
be reduced.

Adopting a strategy of updating only 47, and the rim (bottom row and RHS) data at each
iteration and generating the other parts of the tableau as needed to execute the algorithm, the
size of the tableau to be maintained will further be reduced.

IV.2 Generation of Implicit Part

Supposing a primal algorithm is executed, we need to generate implicit elements only
columnwise to determine the pivot row. The tableau indicates that U,,'U,, premultiplies
A" and U,,"U,, is premultiplied either by L;, or L,, to generate implicit elements. Since
we assumed that the elements of U, U,, are generated columnwise, pre- and
post-multiplying by U, 'U,, canbe accomplished by outer product forms and by inner
product forms respectively. All multiplications are executed from right to left.

Since only ;IT ! is maintained explicitly and other columns are generated as needed, the
work per pivot is determined primarily by the size of 4, !, not by the original problem size.
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The size of Z ;! is equal to the number of binding constraints in L-type constraints that is
relatively small in comparison with the total number of the constraints. However
maintaining A4,,"' requires to keep the indices of rows and columns of 4;, dynamically, which
takes extra time and complicates the implementation. Instead if we start with equality L-type
constraints by introducing extra variables to the inequalities, an existing LP code such as
XMP [5], SPLP [4], or LINDO [8] can readily be used with little modification. This
requires more time to deal with larger 2} . but no time is spent to keep the dynamic changes
of 4]," as we iterate.

V. Extension

The solution approach developed can be extended for the problems with following
constraints. :

Let J; € {jla,'#0} be pairwise disjoint subset of the set Jo U J, and e {ila,’#0} be

pairwise disjoint subset of the set /=\J /. GVUB constraints are of the form,
k

Za/x, +Zalv<h, iel
J k

x, v {0,1}.
Note that the sign of the coefficients, «, can be either plus or minus.

It is always possible to transform ¢® into -1's and @' into +1's by performing column
scalings on a first and followed by variable transformations using x;'= 1-x; if necessary.

VI. Conclusion

VUB type constraints are frequently found in ILP problems due to their tighter
formulations which in turn provide good bounds in enumeration schemes. However the
relatively large number of this type of constraints cause computational burden. Schrage
developed an algorithmic solution approach based on the notion of carrying these constraints
implicitly like in GUB algorithms.

The approach taken in this research is based on Graves and McBride's factorization
approach. The factorization approach has been successful in problems with GUB, embedded
network problems [6], and others. This paper showed that the problems with VUB are also
amenable to this approach. The advantage of adopting the factorization lies not only in the
computational efficiency but also in providing a framework of analyzing the underlying
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problem structure that can be exploited in designing an algorithm. Generalization of this
approach is possible due to this analytical framework.

The computational efficiency of the algorithm is attributed to obtaining U,,'U,,. In GUB
U,," is an identity matrix, therefore, U, 'U,, becomes U,,. The fact that U, is column
singleton makes following computations effortless both in computational time and in data
structure.

Although it is not dramatic as in GUB, the required work for constraints with VUB can
be similarly reduced. U,,'U,, can be constructed from permuting columns of the original U
instead of computing matrix inverse and multiplying matrices. This together with not
carrying the specially structured constraints explicitly wili result overall computational
efficiency over other solution approaches. The computational burden is further reduced by
carrying only ;{T ! explicitly and generating other elements of the tableau as needed.

The approach adopted in this research can be extended for problems with more
generalized constraints such as the one shown in Section V.

Further research must include computational experiments on specific problems which will
verify the effectiveness of the proposed approach.
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