On the Line Search Method for Quasi-Differentiable Optimization Problem

김준홍 (수원대학교 산업공학과)

i) To present a method of realizing the theoretical results of Demyanov in practice, i.e. on a computer in order to produce a kind of constructive evidence for his theory and, in addition, a practical method of getting numerical results for quasi-differentiable optimization problem which may arise in industry and science, we consider in this paper the line search method for optimizing the following quasi-differentiable optimization problem under constraints:

$$\begin{array}{ll} \mbox{Min} & f(x) \ , \ x \ \in \ R_n \\ \\ \mbox{st} & h_i(x) \ \leq \ 0 \ , \quad i \ = \ 1,2,\ldots,m \end{array}$$

where the function $f\colon R_n\to R$, and $h_i(x)\colon R_n\to R$ are quasi-differentiable functions.

ii) In order to find the solution to a quasi-differentiable optimization problem, we introduce a modified gradient method, because it seems to be the most general and exact theory and has many advantages over the their methods. A gradient method method for the solution of quasi-differentiable optimization problem is a iterative algorithm to minimize a function $f\colon R_n \to R$, which creates a converging sequence $(x_k) \in R_n$, where

$$lim \quad inf \ \{ \ f(x_k) \ \} \ = \ inf \ \{ \ f(x) \ \}.$$

- iii) The principle of these algorithms consists on constructing x_{k+1} from x_k in two step:
 - a) choose a direction gk, where the objective function decreases.

b) choose a stepwise $\alpha_k \in R$ such that x_{k+1} can be computed by: $x_{k+1} = x_k + \alpha_k.g_k$

Based on the determination of a direction g_k in quasi-differentiable optimization problem, we examine α_k by several line search methods, and then suggest approximation methods for quasi-differentiable optimization problem under constraints.