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Abstract

The tracking control problem of a flexible manipulator
with a prismatic joint along a given path is discussed.
The nondimensionalization of the elastic part of the ma-
nipulator makes it possible to model such a flexible ma-
nipulator. For a discontinuous velocity trajectory, an op-
timal control theory has been applied to formulate the
problem. The optimal scheme is given to find the in-
put commands(e.g., joint torques) necessary to produce
a specified end effector motion. Simulated results show
the potential use of this scheme for a discontinuous ve-
locity trajectory control.

1 Imntroduction

Tracking accuracy of the end effector of flexible ma-
nipulators and the avoidance of its oscillations is one of
the major open problems in the new generation of very
fast, light and high precision robots. Feedfoward control
strategy is important in reducing the tracking error of the
end effector of the flexible manipulator along a given tra-
jectory. The fundamental point of the problem is how to
solve the inverse dynamics which calculates theoretically
the input commands necessary to track a given trajec-
tory [1] [2]. As to the trajectory tracking problem, the
existence of its solution has been discussed [3].

In order to formulate the inverse dynamics problem,
it is necessary that the prescribed trajectory is contin-
uous. The desired velocity may often be planned as a
discontinuous velocity trajectory when we want to make
the arm start, stop and change its direction in motion.
In such a case, it is theoretically impossible to get the
input command which guarantees the zero tracking error
along such a discontinuous velocity trajectory. Therefore
it is required to make a new approach which tracks the
given trajectory and approximates the desired velocity as
closely as possible.

Generally speaking, we discuss seperately two control
modes in the positioning control problem, those are, 1)
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access control mode which moves speedily a control object
from a present position around a desired position, and 2)
positioning control mode which keeps a control object at
the desired position. The tracking control problem of a
flexible manipulator is essentially the same as the access
control mode. In order to speed up the positioning con-
trol, it is necessary to consider the oscillatory character-
istic of the positioning mechanism and it is important to
minimize the input energy for positioning. For the access
mode in a positioning control, Yamada et al. formulated
the positioning control problem as an optimal regulator

_problem with conditions of making the load cease to oscil-

late at the desired position and time, and of minimizing
the input energy.

In this paper, a tracking control problem of a flexible
manipulator with a prismatic joint is considered. Nondi-
mensionalization of the elastic part makes it possible to
model such a flexible manipulator with time-varying arm
length. We will discuss the input command which guar-
antees the zero tracking error. An optimal control theory
has been used to formulate the above problem.

2 Dynamic Model of the Manip-
ulator

We discuss the flexible manipulator depicted in Fig.1
which consists of two links, one revolute joint and one
prismatic joint.
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Fig.1 Schematic Drawing of the Flexible Manipulator with
a Prismatic Joint



Link 1 is a rigid manipulator which has total length
Ly, mass per umit length p; and area A,. Link 2 is a
flexible manipulator with variable arm length whose total
length is L,, mass per unit length p,, area Ay, moment of
inertia I, and Young modulus E,. The origins of link 1
and link 2 are O; and O, respectively. The distances from
origins O; and O; to any points are expressed by z; and
z,, respectively. Link 2 does translation motion about
link 1, with a prismatic joint. The elastic part of link 2
is defined by the distance between the tips of link 1 and
link 2. An ideal prismatic joint without any undesirable
gap in all directions is assumed.

With respect to the inertial coordinate{OXY), the an-
gular displacement of link 1 is represented by (¢} (the
counter-clock direction is set to be positive). The input
commands, which are the torques to be applied at each
actuator, are represented by u(t) (the counter-clock di-
rection is set to be positive). The line between the origin
of link 1 and the tip of the end effector is called a vir-
tual rigid manipulator. R, (t) denotes its radial length
and 6,;,(t) denotes its angular displacement with respect
to the inertial coordinate. We assume that the elastic
displacement of link 2, y(z,t), is very small compared to
the rigid displacement. The radial displacement of link
2, R(?), is given beforehand.

The potential energy of the system is assumed to be
the elastic potential energy of the beams. Therfore, we
can write the kinetic energy and the potential energy of
the system as follows:
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Ty = [21cos6(t), z; sin 6(¢)]
(0<z < Ly)

rg = [(R(t) — Ly + z2) cos (1), (R(t) — Ly + z2)sin (1))

ry = [{(R(t) — Lo + z2) cos 8(t) — y(z2,t) sin6(¢)},
{(R(t) — L2 + 22) sin 8(t) + y(z2,t) cos §}]
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From Euler-Lagrange equation, we obtain the partial
differential equation as follows:
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Using the following relationship, we can nondimen-
sionalize the elastic part of the flexible manipulator.
2= (R(t) = L)z + (L1 + L2 — R(2)) (5)

Therefore, by nondimensionalizing and neglecting the higher

order terms, we can approximate motion equations of the

flexible manipulator and the rigid manipulator as follows:
The flexible manipulator;

So2y (B(0) = (RE) = L)) 66) + (R — D)

[)l pads{—R(8)u(z,1) + (L1 + (R(t) = L1)z) i(z, £)}dz

+%P1A1L?§(t)
(6)
! y(2,1) .
(R(t) — Ll)/o {Ef(—m + paAa{i(z,1)
+(Ly + (R(t) — L1)2)d(t)}}dz
=0 (7)
The rigid manipulator;
S72 (3RO R0 = BRO(R() — L)) 6(0)
+xeas (R0 - (R() = 1)) 6(0)
+';‘P1A1L?é(t)
=u (8)

Actuator torques required for a flexible manipulator
to track a given trajectory are computed by a simple and
efficient method using special coordinate systems, called
virtual rigid link coordinates. Nondimensionalization of
the elastic part makes it possisble to model such a flexible
manipulator with time-varying arm length. To approxi-
mate the partial differential equations by ordinary differ-
ential equations, the method of modal analysis is used.
Finally the dynamics of the flexible manipulator with a
prismatic joint are given by [4]:



Z=Az+bu (9)
Buir = C2 (10}
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2 0
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coefficients wy, -, wy, blz- <o+, by, ¢y, ++-, by are the

functions of R(t) and/or R(t) which denotes 2nd time
derivative of R(t).

3 Optimal Input Command Plan-
ning

The problem which makes the end effector track along
the given trajectory is the same as the problem which
makes R(t) and 6(t) track along the desired radial dis-
placement function R4(t) and the angular displacement
function 84(¢), respectively. Since it is assumed that the
radial displacement function is given beforehand and the
trajectory error in radial direction is very small compared
to that in rotational direction, we discuss only the track-
ing control problem along the desired angular trajectory
Ba(t).

Input command planning problems are different from
the positioning control problems in the following points

1) there exists the deflection of the manipulator, and
2) after that the manipulator reaches the desired veloc-
ity, it is required to suppress the tip oscillation and to
track the desired trajectory. Therefore, in this section
we will discuss input command planning for the discon-
tinwous velocity trajectory by using an optimal control
theory. The procedure to calculate the input command
u(t) which is necessary to track a desired trajectory is as
follows:
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Fig.2 Desired Trajectory of the Flexible Manipulator
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Fig.3 Desired Trajectory of a Rotational Direction
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Fig.4 Desired Trajectory of a Radial Direction and the
Modified Trajectory by Spline Function



step 1 Fig.2 shows the desired trajectory which moves
uniformly along a straight line. We get the desired
trajectory [Ra(t),84(t)] by solving the inverse dy-
namics of rigid manipulator. Fig.3 and Fig.4 show
displacement and velocity of the rotational desired
trajectory, 64(¢), and the radial desired trajectory,
R,(t), espectively.

step 2 Since it is assumed that a radial displacement
function is given beforehand, we modify a radial
displacement function by means of a spline func-
tion. Fig.4 also shows the modified time history of
R(t) and R(t), corresponding to the radial displace-
ment and velocity.

step 3 We formulate the problem to determine the opti-
mal input commands necessary to track the angular
displacement and velocity of the virtual rigid ma-
nipulator along the rotational desired trajectory.
That is to say, by introducing the optimal con-
trol theory, we obtain the optimal input command,
Uope (), to satisfy a specified objective function. The
optimal criterion to be minimized is expressed by

2 = /Ot’ L{t, 2(t), u(t)}dt (1)

where
L{t. z(t), u(t)} = wi, {fa(t) (
+w?, {6a(1) 9’ e (1) 12

8. () = 6(t) — tan™ {y(t)/ R()}

where, t; is a final time. wr; and wp; denote weight-
ing factors. um.. denotes the maximum input com-
mand.

step 4 We get the input commands which satisfy the op-
timal criterion by using Fletcher-Reeves method [5].

4 Simulation

We have simulated the input command which guaran-
tees the zero tracking error about the desired trajectory
shown in Fig.2. The results will be given for the flexible
manipulator with the following design parameters:

Link 1;
length of link 1, L; = 1000 (mm)
mass per unit length, p; 4; = 0.504 (Kg/m)
Link 2;
length of link 2, L, = 1000 (mm)
mass per unit length, p2A4; = 0.504 (Kg/m)
flexural rigidity of link 2, EI = 94.76 * 0.05 (Nm?)
damping ratio, £ = 0.02
Other parameters;
final time, t; = 2 (sec)
weighting factors, wy, = wr, = 1000
value of the maximum input command, 4., = 1000
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Fig.5 shows the elastic deformation of link 2 under
the condition:
input command ;
u(t) =
radial trajectory ;
R(t) = 025+ 3 +0.75 %t + 1.1
(0<¢<2)

—sgn(t — 1)

From Fig.5, we know that the more the length of flex-
ible part is, the larger frequency of oscillation is. Fig.6
shows the optimal input commands u(t) which are com-
puted in cases of rigid manipulator and of flexible manip-
ulator by using an optimal control theory, respectively. In
case of rigid manipulator, we computed the optimal in-
put command, assuming that the elastic displacement of
Link 2, y(z,1), is zero. Fig.7 and Fig.8 show respectively
the angular displacement and velocity of the virtual rigid
manipulator when the input commands u(t) are applied
to the manipulator. From Fig.7, we know that mean er-
ror of angular displacement is reduced in magnitude from
0.168(m) to 0.014(m). The result shown in Fig.8 is that
mean error of angular velocity is reduced in magnitude
from 0.636(m/s) to 0.098(m/s). From the above results,
we may conclude that the scheme presented in this pa-
per is effective in tracking the desired trajectory which is
discontinuous in velocity.
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Fig.6 Optimal Input Commands Computed by Optimal

Control Theory
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Fig.7 Trajectory Responses under the Optimal Input Com-
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5 Conclusion

One of the important issues on the tracking control
of a flexible manipulator is how to determine a suitable
control input command and to reduce the tracking error
of the end effector along a discontinuous velocity trajec-
tory. A procedure has been presented to obtain the input
commands which are required to track the end effector of
the flexible manipulator with a prismatic joint along a
discontinuous velocity trajectory.

A simulation study was carried out with respect to the
desired trajectory which moves uniformly along a straight
line. The optimal trajectory responses obtained by the
optimal input commands which considered elastic motion
do effectively reduce tracking error than those which did
not consider any elastic motion.

References

(1] Bernd Gebler: Feed-Forward Control Strategy for
an Industrial Robot with Elastic Links and Joints:
Proc. 1987 IEEE Int. Conf. on Robotics and Au-
tomation, Vol.2, 923/928, 1987

Zheng-Dong Ma, Haruhiko Asada and Hidekatsu
Tokumaru: Inverse Dynamics of Flexible Robot
Arms for Trajectory Control: Jour. of Systems and
Control, Vol.31, No.10, 764/772, 1987

617

[3] Zhao Hui Jiang, Masaru Uchiyama: Compensability
of Flexible Robot Arms: Jour. of RSJ, Vol.6, No.5,
416/423, 1988

Tatsuya Nishibayashi: A Study on Trajectory Con-
trol for Prismatic Robot Arms: Master thesis, De-
partment of Mechanical Engineering, University of
Osaka Prefecture, 1991

[5

o

Hideaki Kanoh: Theory and Computational Meth-
ods in Optimization: Corona Publishing Co., Ltd.,
215/216, 1987



