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Abstract

In this paper an identification of nonlinear con-
tinuous systems by using neural network is con-
sidered. The nonlinear continuous system is iden-
tified by two steps. At first, a linear approximate
model of the continuous system with nonlinearity
is obtained by IIR filtering approach. Then the
modeling error due to the nonlinearity is reduced
by a neural network compensator. The teaching
signals to train the neural network is gotten by
smoothing the measurement data corrupted by
noise. An illustrative example is given to demon-
strate the effectiveness of the proposed approach.

1 Introduction

Most of real systems are continuous time systems with
nonlinearity. However, for convenience of treatment of
the problems, the systems are often linearly approximated
around the operating point, so the well established linear
system theory can be used. But in these cases, the error
due to the nonlinearity inevitably exists. While the physi-
cal meanings of the parameters of continuous time models
are clearer comparing with discrete time models, and the
corresponding continuous time models are not uniquely de-
cided when we derive it from the discrete time models. So
the continuous time models are more desirable than the
discrete time models. _

In this paper, deriving a linear approximate model for
continuous time systems with nonlinearity, and structur-
ing a neural network compensator to reduce the error due
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to the nonlinearity are considered. In order to apply the
digital computers to the treatment of continuous time sys-
tems, an identification model which has the same param-
eters of the continuous time systems are derived by IIR
filtering approach and bilinear transformation. Then the
parameters of the linear approximate model are estimated
by the recursive LS method from sampled data. To reduce
the modeling error due to the nonlinearity, we present a
structure of neural network compensator. An illustrative
example are given to demonstrate the effectiveness. Fi-
nally, some conclusions are presented.

2 Statement of the problem

Consider single input single output continuous time sys-
tems as the following:

Alp)z(t) = B(pu(t) + N(p,u(t), z(t)),
A(.p) = aopn+"‘+an7 aO=17 (1)
B(p) = bip" 4+ bn-

1A@zOI >> |IN(p, u(t), z(2))|] > € @

1B(p)u@)| >> ||N(p, u(t), ()] > £

where p is the differential operator, u(t), 2(t) are the input
signal and the output signal of the system on instant ¢,
and N(p,u(t),z(t)) is a nonlinear function of p, u(t), z(t).
The condition (2) shows that the system can be approxi-
mated by appropriate linear model, and the error due to
nonlinearity can not be negligible though it can be limited
to a small value. Assume that the poles of A(p) = 0 are
in left complex plane so that the system is stable, and it is
irreducible between A(p) and B(p) so that guarantee the
identifiability.
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Figure 1: System to be treated

Practically the sampled output measurement is always
corrupted by a noise, the output measurement on instant
KT (T is the sampling period) is:

y(k) = z(k) + v(k) ®)
where note y(kT'), z(kT'), v(kT') respectively as y(k), z(k),
v(k), for convenience. v(k) is the measurement noise, it is
assumed to be white noise. Such system is shown in figure
1.

In this paper, we estimate the parameters of linear ap-
proximate model from input-output sampled data, and
structures a neural network compensator to reduce the
modeling error due to nonlinearity.

3 Estimation of linear approxi-
mated model

The system to be treated is a nonlinear system, so there
must be the modeling error due to the nonlinearity when
the system is approximated as linear model. Usually, the
model order is higher, the accuracy is better. However, the
model will become complicated and difficult to be treated.
Practically the model order decided by tread-off between
the accuracy and the simplicity. Here, we assume that the
model order is known.

While when we estimate the continuous time model, the
differential value of input-output signal are not often gotten
directly from the measurement, we have to do differential
operation on input-output signals. So how to reduce the
effect of noise due to differentiation is a important point.
Here, We estimate the parameters of the systems by the
digital low-pass filtering approach.

First, we choice one of the low-pass filters. Here, But-
terworth filter (a type of IIR filters) which the cut-off fre-
quency is w., and the order is m (m > model order n) is
used.
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F(p) = —p— 4)
() +alE)™ "+ +
We We
where ¢;(i = 1,--+,cm) are the coefficients of Butterworth
filter. Butterworth filter when m = 2 is shown as the

following:

1
F(p) = W (m=2) (5)

Multiplying both side of the equation (1) by the filter (4),
we have

Fp"z(t) + 3 wF(pp™a(t) =

i=1

ib;F(p)p"*"u(t) + F(p)N(p, u,2)

Discretizing it by the bilinear transformation:

21-2!

= TivaT @

and considering the equation (3), we obtain

Eoy(B) + 3 aibiy(B) = 3 bibua(k)

i=1 =1 (8)
+N(z,u(k), z(k)) + (k)

where
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Z a.Q(Z_l)( FNA+7
= Z‘l)" 'v(k)
(i=0,1,---,n)
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(

2
Ea

r(k) =
(9)

Q") =

1271

)“+Ru”)
R(z™Y) )'""( ) (14271

and the term Nz, u(k), z(k)) is the one of discretizing F(p)
- N(p,u,z). Here given that:

(k) = [ fly(k) _€2y(k _fﬂy(k)
€lu(k)v §2u(k)1 e vénu(k)]’r
(10)
8 =[a1,a2,  ,n, b1, by, -+, BT
§ = Nz, u(k),z(k)) + r(k)
then,



&oy(k) = 2T(k)@ + 6 (11)
§ is a term of error consisted from system nonlinearity and
measurement noise. If the input signals are sufficiently
rich, then we can estimate the parameters of the linear

approximate model by the following LS method:

N N -
B(k) = [;:p(k)[z(k>zT<k)1]
= (12)

N
= P(k)z(k)&w(k)]

where p(k) is the forgetting factor, N is the number of data.
For the equation (12}, the recursive LS algorithm can be
described by the following form:

k) = 8(k-1)
+v(k)P(k — 1)z(k)e(k)
e(k) = &yk)—2T(k)8(k - 1)
_ 1 L (13)
Pk - 1)z(k)z"(k)P(k — 1)]
(k) = !

p(k)+ 2T(k)P(k — 1)z(k)
The initial values 6(0), P(0) are choose as:

8(0)
P(0)

any value

ol (14)

where a is a sufficiently large positive constant. The for-
getting factor p(k) is[10]

p(k) = 0.99p(k — 1) + 0.01, p(0) = 0.95 (15)

4 Neural Network Compensator

Neural Network

The neural network used in this paper, is a three layers
network with n; inputs, 1 output. The notations of each
input-output signal, each weight between neurons and each
threshold of neurons are as shown in figure 2. Only the neu-
rons on the hidden layer have sigmoidal function property,
the neurons on the output layer have linear property, and
the neurons on the input layer only pass the input signals
to output. The relationship of the network from input to
output is as following equation:
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Figure 2: Three layer neural network

yi = f(zl:w?,-le—bj) (16)
i=1
1
B = Ty tn
0 = iw}’Hi (18)
i=1

The weights of the network is adjusted by the backpropa-
gation with teaching signals:
+ 84T

JF
ATy = 1) (_>
7/

where E is the square error of the output of network, 7,3

(19)

are appropriate positive coefficients. T is the parameters
vector consisted of the weights and thresholds of the net-
work, AT is degree of adjustment and ! is the number of
training times.

Neural Network Compensator

The differential equation of the linear approximate model
obtained from section 3, is given as the following:

Ap)at) = Bput),
Alp) = pP"+ap" -+, (20)
Blp) = bip" '+ +b,.

Discretizing the system (1) and the model (20), we obtain
the output of the system and the output of the linear ap-
proximate model as the following:

w(k) = f(z(k-1), -, z(k —n),

ulk — 1), -, u(k —n)) (21)
a(k) = filz(k—1),-, @k — n),

u(k —1),---,u(k — n)) (22)

where f(-) and fi(-) are the discretized system function
and the discretized model function respectively. Thus the
modeling error e(k) is:



e(k) zi(k) — z(k)
y(x(k - 1)7' o ,.’B(k - n)v
zi(k —1),---,zi(k — n),

w(k —1),---,u(k — n))

(23)

where g(-) is the error function. The e(k) contains mainly
the error due to the nonlinearity even though it contains
another approximating errors. From equation (23), the
modeling error e(k) depend on the past values of the input
u(k—1),--,u(k —n), the past values of the system output
z{k = 1),---,z(k — n) and the past values of the output
of the linear approximate model z;(k — 1),---,z)(k — n).
Thus using a neural network which has the inputs z(k —
1),---,&(k-n), z(k=1),-- -, zi(k—n), u(k—1),-- -, u(k—
n) and the output é(k), if we approximate the relationship
of function g(-), and add the output of the network to the
output of the linear approximate model, then the modeling
error can be compensated.

While the signals used in equation (23) =z(k),z(k —
1),---,z(k — n) are the true outputs of the system, in
practice, only the corrupted output measurements y{(k),
y(k —1),--- can be gotten. If we only replace z(k), z(k —
1),--+,z(k = n) by y(k),y(k —1),---
not get the correct compensating signal even if the neural

,¥(k — n), we can

network represent the function g(-) exactly because the ef-
fect of the output measurement noise. While the network
which accurately represent the function g¢(-) can not be
gotten when the network is trained by using such signals
corrupted by noise. We have to find a way to reduce the
noise effect.

The outputs of the linear approximate model z;(k — 1),
-++,a;(k — n) are the approximation of the system outppts
z(k —1),---,z(k - n).
system z(k — 1), -, z(k — n) to the outputs of the linear

So we replace the outputs of the
approximate model z;(k—1),- - -, z;(k—n) in equation (21),
and use the past values of inputs u(k—n—1),-- -, u(k—2n).
This means that we hope to infer the system output in some
degree by addition of u(k —n —1),---,u(k — 2n). Thus we
have

u(k ~ 1), u(k — n))
_ (24)
~ flzlk—~1),-- -, zi(k = n),

u(k — 1), -, u(k — 2n))

and the error compensating signal is
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Figure 3: The neural network compensator

e(k)

zi(k) — z(k)
g(zl(k - 1)1 e 7xl(k - n);
u(k —1),--+,u(k — 2n))

By this equation, a neural network error compensator is

(25)

structured as shown in figure 3.

The Training of Neural Network

From equation (25), adjustment of the parameters of the
neural network should be carried out by regarding the data
set {e(k),zi(k—1),-- -, zi(k—n),u(k—1), -, u(k—2n)} as
teaching signals. However, e(k) is e(k) = xi(k) — z(k), so
the true output of the system z(k) on instant k is required.
One of the way is that many output measurement values
are stored up, the z(k) is estimated by any proper statis-
tical approach, then some typical teaching signals based
on the estimated values are formed and the weights of the
network are decided by off-line training. We present an-
other way that is on-line training approach based on data
smoothing as the following explanation.

Usually, the low-pass filter, the data smoothing, etc are
effective to reduce noise. However, the information used
in the data smoothing is more than in the low-pass filter,
thus the efficiency reducing noise effect better than low-
pass filter. So we use one of the smoothing approach called
Savizky-Golay method|2] here.

dh-m = o ¥ wGuk-mes)  @9)
W= 3 ) (27)

where §j(k — m) is the smoothed measurement of system
output on instant(k —m). y(k — m+j) is the output mea-
surement on instant (k —m+ j) and w(7) is the coefficient



of smoothing. The larger is the value of m, the better is
degree reducing noise effect, while the large is wave defor-
mation, so we have to take a tread-off between them.

From equation (26), we can only get the smoothed sig-
nals until instant (k — m) on instant &, so the error signal
computed on the basis of above can be also gotten un-
til instant (k — m). Namely, the error signal is given by
e(k —m) = z;(k — m) — §(k — m). Therefore, the weights
of the neural network have to be adjusted in accordance
with the data delayed m instants. Yet, delayed data set
{etk —m),zi(k —m = 1),---,;i(k —m — n),ulk —m —
1),---,u(k —m — 2n)} satisfy the relationship of the func-
tion g(-), the neural network can approximate the function
accurately if the training is sufficient. The training of the
neural network and the error compensating are carried out
every instant. On instant &, the weights of the network
are adjusted in accordance with data delayed m instants,
then the inputs of the adjusted network are changed to
ok = 1),--,zi{k — n),u(k — 1),--+,u(k — 2n), and the
model output is revised by error compensating signal é(k)
obtained from the output of the network.

5 Example

Consider a nonlinear system described by the following
differential equation:

i+ 3% +0.37% + 4z + 0.8sin(z) = 4u (28)

The simulation experiment are carried out with the sam-
pling period T = 0.02, N/S=10%. Using the IIR fil-
ter approach under the condition: the input signal u
sint + 0.5sin 3t 4+ 0.3 sin 5¢ + 0.2sin 7¢ + sin 1.5¢ + 2sin 4.5¢,
sampling number N=10000, the cut-off frequency of But-

terworth filter w, = 4, the order m = 2, the parameters of
the linear approximate model are estimated. the obtained

model is:
F + badt + Bpxy = byt + bou (29)
a = 3.1066, 4, = 4.6569
. . (30)
b = 0.0025 b, = 3.9582

When the input is a sinusoid signal u = sin(zkT’), the sys-
tem output measurement and the model output are plotted
in figure 4(a), 4(b) respectively. The bold curves are true
output of the system.

The modeling error is compensated by a neural network
with 6 inputs, 1 output, and 3 neuron on hidden layer.
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(a) System output and the measurement
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(b) System output and model output
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Figure 4: Outputs

The inputs are z;(k — 1), z;(k — 2), u(k — 1), u(k — 2), u(k -
3),u(k — 4) respectively. To get the error teaching signal
required for training, the measurement of the system out-
put is smoothed by using 21 points polynomial smoothing
method[2]. The coefficients of smoothing are -171, -76, 9,
84, 149, 204, 249, 284, 309, 324, 329, 324, 309, 284, 249,
204, 149, 84, 9, -76, -171, and the regularization constant
is 3059. The 21 points smoothing is carried out delayed 10
instants, so the network is also trained on the same instant.
Figure 4(c) shows that model output are compensated by
the neural network. Figure 5 shows that the errors before
and after the compensation. That is the result after 200000
times training. The compensated effect is clear.

6 Conclusion

In this paper, the approach for identification of nonlin-
ear continuous time systems is proposed. In the approach
the parameters of the linear approximate model are esti-
mated from the input-output sampled data of the nonlinear



3990 4000

Figure 5: Errors before and after the compensation

gystems by low-pass filtering approach, and the modeling
error is compensated by using neural network in the cases
with the measurement noise. On the training of the neu-
ral network, the output measurement corrupted by noise
can not be directly used as the teaching signals, so the er-
ror teaching signals are gotten by data smoothing method.
The training is carried out based on the data delayed some
instants because the smoothing method is used. The mod-
eling error is compensated on current instant using the
network gotten by the training. Finally, the illustrative
example is given to demonstrate the effectiveness of the
proposed approach.
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