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Abstract

In this paper the issue of convergence rate is intro-
duced for a learning control scheme we have devel-
oped and applied for tracking of unknown linear sys-
tems. A sufficient condition under which the output
trajectory converges exponentially fast is obtained us-
ing the controllability grammian of controllable linear

systems. Under the same condition it is also shown

that the learning control input converges exponentially
with the same rate as the rate of output convergence.
A numerical example with computer simulation results

is presented to show the feasibility of the scheme.

1 Introduction

In parallel to the classical learning control methods which
correct coefficients or parameters of learning system model, a
number of new learning schemes which are directly related to
object dynamics have been proposed for uncertain systems.
One common feature of these learning schemes is that the
control input is updated so as to improve the performance of
the controlled system based on the observation of system re-
sponse. Among the developed learning schemes for uncertain
linear systems, Arimoto ef.al[2] used the time-derivative of
system output in updating the control input and established
convergence under the condition ||I — CBT||s < 1, where
C, B, T represent the output matrix, the input matrix and
the learning gain matrix, respectively. Oh ef.al.[5] combined
a least square parameter estimator with an input correction

scheme and constructed the estimated system model which
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was used in generating the update signal for learning input.
Their scheme converges if the estimator does and the defined
linear operators L, P and P satisfy ||L||||[P - P|| < 1. On
the other hand, Togai[8] investigated several learning schemes
and provided some of the convergence conditions for the in-
vestigated discrete system models. One condition looks like
{II = BG|| < 1, where B and G denote the input matrix and
the learning gain matrix, respectively. In both of Oh’s and
Togal’s algorithm, the time-derivative of state error has been
used to generate the learning control input. Whereas these
learning schemes are simple and straightforward, the conver-
gence of each of them hinges upon the prudent choice of the
learning gain which satisfies one of the norm conditions such
as given above. Strictly speaking, this implies that they are
not applicable to truly unknown systems whose matrices are

not known a priori.

Recently, we have proposed a new learning method which
can be applied to a class of unknown linear systems[7]. Al-
though the class of target systems is somwhat restricted, the
proposed technique does not use any norm conditions for con-
vergence such as given above but relies on the most basic con-
ditions such as controllability and observability conditions. In
generating the learning signal, this scheme uses the system
outputs directly without any derivative terms, which makes
the learning controller more practical. On the other hand, the
issue of convergence rate was not introduced in [7]. In this
paper, with the aid of controllability condition of unknown
linear systems, we derive a sufficient condition for exponen-

tial convergence of the learning systems. The analysis uses



the nonsingular controllability grammian and is based on the
descreasing index functional given in [7]. Finally. a simula-
tion results is given to demonstrate feasibility of the learning

control scheme.

2 An Output Learning Control System

The class of unknown linear systems considered in [7] is writ-

ten as

z(t) Az(t) + Bu(t) + Bd(t)

y(t) m

1l

Cx(1),

where the state vector z(t) € R™, the input vector u(t) € R™,
the output vector y(t) € R™, the bounded unknown distur-
bance vector d(t) € R™ and rank(B) = m. The completely
controllable/observable system matrices {A, B, C} are time-
invariant or time-varying with continuous elements and sat-

isfy the constraints

P+PA+ATP = —aCC (2)

PB cT, (3)

where a denotes a positive constant and P = PT € R"*" is

a bounded positive definite matrix.

Assuming that a feasible input/output pair {uq,y4} for
t € [0,tf] exists for the unknown system (1), a continuous-
time output tracking problem was solved by using the follow-

ing output learning rule.

wH(t) = uwi(t) + Pei(t). 4)

As for an initial condition, we set u!(t) = 0 for all t € [0, ¢/]
and ej(O) = 0 for all j = 1,2, ... The gain matrix I is sym-

metric positive definite and T’ < al.
The closed-loop error system at the jth iteration is then
élt) Ael(t) + Bl (t)

ei(t)

Cel(t),

(5
(6)
where @ (t) = uy(t) — u/(t).

The following theorem briefly summerizes the convergence

results presented in [7].

Theorem 1,2[7]: Assume that the desired input uq is bounded.
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Then, the output learning rule (4) for the class of unknown

linear systems (1) converges uniformly as follows:

-

i) VIt () < Vi)

i)  limel(t)=0
J—r0o0

i) lim #(t) = 0,
P et

where

. t .
V-’(t):/ #" ()T~ (r)dr
(i
for all j =1,2,... and for all £ € [0, ¢/].

The theorems were proven by showing that the inequality

holds for the learning system

. . . . o N
Vitl _yi = _od (1) Ped(2) -/ ei"(r)(al = D)ei(r)dr < 0.
0
(M
This inequality is essential in analyzing convergence property

of the learning system as shown in the sequel.

3 Exponential Convergence of the Learn-

ing Systems

Based on the inequality (7) obtained, we now investigate the
rate of convergence of the learnine systems. If we define the

controllability grammian of the system (1) as
¢
W(0,t) = / o(t, r)BBT®T(t, r)dr,
(i

where @ is the transition matrix of 4, detW(0,t) # 0 for all
t € [0,¢y], since the pair {4, B} is completely controllable.

Similary, we definde the matrix
¢
Wr(O,t)E/ o(t, 7)Br o7 (t, r)B dr,
o

where T is the symmetric positive definite learning gain ma-

trix.

Then, as verified in the following lemma, the matrix Wr(0,t)

is nonsingular if and only if W{0,1) is nonsingular.

Lemma 1: Wr(0,t) is nonsingular if and only if W(0,t) is

nonsingular.

Proof: Let I'"! = KK, where K € R™*™ represents a non-
singular matrix. Then, Wr(0,t) is the controllability gramian
of the system {A, B}, where B = BK and rank(B) = m. To
prove the lemma, we are going to show that the rows of ®(¢)B
are linearly independent if and only if the rows of ®(t)B are

linearly independent. Then, the lemma follows, since the



controllability grammian Wr(0,t) is nonsingular if and only
if the n rows of ®(t)B are linearly independent[4].
(Necessity) By way of contradiction. Assume that the n
rows of ®(t)B(t) are linearly independent, but the n rows
of ®(t)B(t) are not. Then, there exists a nonzero row vector
v such that 0 = v®({)B = v®(¢)B for any t € [0,t], which
contradicts the assumption. ‘

(Sufficiency) Similarly, assume that the n rows of ®(¢t)B
are linearly independent, but the n rows of ®(¢)B are lin-
early dependent. Then, there exists a nonzero row vector v
such that 0 = v®(t)B = v®(t)BK for any t € [0,%;]. Let
# = (v®(t)B)T. Then, it becomes K% = 0, which results in
a trivial solution ¥ = 0 with a nonsingular matrix K. This is

a contradiction. Q.E.D.

Now, let W(0,t) = W-T(0, t)Wr(0,t)W=2(0,t). Then, Lemma
1 implies that W (0, t) is nonsingular, since the uncertain sys-
tem is completely controllable for all £ € [0,%;]. With this,
the following lemma is obtained which is useful in deriving
the conditions for exponential convergence of the learning

systems.

Lemma 2: The performance indices V7 in Theorem 1,2 sat-

isfies the following equation

Vi(t) = T (OW(0, )el(t). (8)

Proof: Because the solutions e(t) of the error equation
. t . .
(5) is written as ¢i(t) = / o(t, ) B (r)dr, e5(0) = 0,
. 0 . .
the input error @ (r) can be solved from e’(t) as @/(r) =

BT®T(t, )W=1(0,t)e’(t) for ¢, 7 € [0, 5], where 7 < ¢.

Then, the cost functional VJ(t) given in Theorem !, 2 becomes

Vi(t) /Ot @ ()01 (r)dr

/' T (BWT(0, t)e(t, r) BT BT (8, 7)
4]

W0, t)el (t)dr

ST HWT(0,¢) /0 ‘¢, /) Br-1BTOT(t, r)dr
W0, 1)e(t)

" (W T (0, yWr(0, )W 1(0, )’ (1)

T (W0, t)ed (1),

This completes the proof. Q.E.D.

The output learning rule is now shown to be exponentially

convergent in the following theorem.
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Theorem 1(Exponential Convergence of Learning Sys-
tems): Assume that the learning gain I in (4) is chosen such
that Apmin(P) < Amaz(W(0,1)). Then, the output learning

control systems converge exponentially as follows:

i) lim Vi(t) =0, such that Vi(t) < Vipi
j—00
it) lim e7(t) = 0, such that |ef(f)| < —L—pjn
j—o0 ’ - Amin(VV)
ii)  lim E3(t) =0, such that Ei(t) < V1pd,
j=+00

’\min(P)
Ama:c(vv)

where p(t) = (1 —
D)el(r)dr.

.
) and Ei / ei"(r)(al -
0

Proof: From the inequality (7) and Lemma 2, we obtain

vith < vi_ e pel
Amin(P) 5
< (1 - Smmlyyi
< ( z\mu(W))
< PV

which confirms {). With this, the inequality (7) implies ii),
since from Lemma I W(0,t) is nonsingular. Similarly, i)

follows from the inequality (7). Q.E.D.

Corolary 1: Under the same condition as in Theorem 1, the
learning input sequence {1’} in the output learning systems

converge exponentially as j increases.

Proof: From the error equation, it becomes
| ()] < ||BT@(t, )W L(0, t)|||e?(t)|. With this, Theorem 1
implies that @/ converges exponentially to zero as j increases.

Q.ED.

Remark: Since p depends on the learning gain I', a suffi-
ciently small value of I' can be chosen to make p less than

urity. A simple choice is to let T = yI with which the con-
’\min(P)
’\min(W)

vergence rate function becomes p=1- 17

4 A Numerical Example

As an example, consider the second order system £+2z+z =
u, which comes from a simple model of DC motor(3], where z
and u denote angular velocity and input votage, respectively.
Describing the equation in state space form, we obtain

z = Az+4bu

y cz,



and the system {4, b, c} forms a controllable and observable
system. Because A is strictly stable, the positivity of the
solution matrix P of the Lyapunov equation (2) is guaranteed
with the observable pair {4, c}. Note also from constraint (3)
that the output matrix ¢ should satisfy cb # 0, which implies
that the relative degree of the present SISO system is one.
The existence of a positive constant a can be shown by solving

the equations (2) and (3), from which a = 4 is obtained.

When performing the simulation, the desired output yu(t) is
set as[3],
ya(t) = 12631 —¢t) for £€[0,1].

Figure 1, 2 and 3 show respectively z7, 27 and w’ trajectories
of the learning system using the prediction learning rule with
I' = 2.5. Figure 4 shows that the trajectory =’ is sufficiently
close to the desired trajectory at around the 40¢h iteration.
Note in Figure 4 that the rms error of the system trajectory

reduces to less than one percent of the initial error.

The learning rule with different learning gains up to a have
been tested with and without the input disturbance d. In
every case, the system converges relatively fast with these
learning control schemes. The results show that the reason-
ably fast convergence rate can be achieved even without using
the time-derivative of output/state error for the learning rule
[2, 5, 8]. Note also that the output represents the angular

acceleration of a DC motor.

5 Conclusion

In this paper, we have derived a sufficient condition under
which the learning control method presented in [7] converges
exponentially fast. Under the condition, the tracking error
of learning system as well as the learning input converges
with exponential rate which depends on the learning gain of
learning rule. A simulation example shows feasibility of the
learning method without time-derivative terms in the learn-

ing signal.
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