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ABSTRACT

An iterative learning control scheme is newly designed in
the frequency domain. Purposing for batch process control, a
generic form of feedback-assisted first-order learning scheme
is considered first, and the inverse model-based learning
algorithm is derived through convergence analysis in the
frequency domain, To enhance the robustness of the proposed
scheme, a filtered version is also presented.

Performance of the proposed scheme is evaluated through
numerical simulations.

INTRODUCTION

The iterative learning is rather a new control concept
which has been developed as a teaching mechanism for robot
manipulators. With only limited knowledge of the process, the
learning algorithm calculates an updated control signal from
the past operation records such that the tracking error is
reduced as operation undergoes iteration.

The concept of the learning control had been presented by
many researchers with many different forms, but was ela-
borated as a formal theory by Arimoto and his associates
(1984). After the contribution of Arimoto et al.(1984), many
different learning control methods have been proposed (Togal
and Yamano, 1985 Gu and Loh, 1987; Bondi et al., 1988;
Kawamura et al., 1988; Bien and Huh, 1989) including the
first—order, the higher-order, the PID-type, and the other
learning algorithms., The usual approach of the existing works
is to presume learning control scheme first and then to find
the convergence conditions associated with the process
models described in the time domain. In addition, it has been
generally assumed that both the process output (position) and
its derivative (velocity) are measurable, which is true in
mechanical systems but not true in chemical processes. As a
consequence, the proposed learning algorithms have only
restricted types and the resulting convergence conditions are
hard to test in chemical process control, where the transfer
function models are extensively used.

In the present work, intending utilization for control of
chemical batch processes where various disturbances are
introduced in an unexpected manner, the existing open loop
learning algorithm is modified first by combining feedback
control for disturbance rejection. Starting from a generic
formulation of the feedback-assisted first-order learning
control scheme, an inverse model-based learning algorithm is
proposed through convergence analysis in the frequency
domain. This basic learning control scheme is then further
modified to a filtered version to enhance the robustness.
Finally, performance of the proposed scheme is evaluated
through numerical simulations.

PROCESS DESCRIPTION
The batch process usually deals with multiple grades of
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multiple products based on recipes. For a certain grade of a
certain product, however, the same recipe is invoked at the
respective batch, so the operation is repetitive.
Suppose that a batch process for a given production recipe
is described by a SISO transfer function model as follows:
y=Pu+d+w (e8]
Variables in eq. (1) may be functions of s or z according to
the domain under consideration. In this model, » and ¥y
denote the maipulated and process variables, respectively;
both 4 and w stand for unknown disturbances, but d
denotes a repetitive one which occurs with the same pattern
in each batch whereas w is a random perturbation including
unrested initial states. An example of repetitive distur—
bhances is the heat of reaction in a batch reactor. Although
the heat of reaction may have different profiles from batch to
batch, the difference is usually slim and a good part of the
profile is reproduced. Let the subscript & denote the k-th
batch. Then d satisfies

di=dy1=d 2)

OBJECTIVE OF THE LEARNING CONTROL

Now we assume that only an approximate description of the

process is available. Incorporating a further assumption that
w is absent, the objective of the leaming control is to
progressively achieve a perfect tracking as the batch number
increases while compensating the effects of the repetitive
disturbance completely. In mathematical terms, the objective
can be written as

Jim I ye=r i =0 @)

for an appropriate norm definition.

BASIC SCHEME OF THE FEEDBACK-ASSISTED
ITERATIVE LEARNING CONTROL

Perfect control is virtually impossible in real-time control of

continuous processes when the control signal is calculated
based on the real time measurements of the process
variables. If the exact process model is available and all the
disurbances are measurable, perfect control can be achieved at
least theoretically. Even in this case, however, the
compensators may appear as differentiators and/or noncausal
ones which are physically unrealizable.

In control of batch processes, somewhat different but
favorable operational situation is afforded in view of the
controller design, in that the same operation is repeated in
each bach and there is a sufficient interval between batches.
This enables us to assess the control performance of the



previous batch and to determine an updated control signal
which may reduce the control error in the next batch. For
example, filtering the output error in the previous batch with
an inverse process model will yield the input error signal
Biasing the previous control input by the amount of the input
error signal will give a corrected control input. Realizability
of the inverse process model in view of causality and/or
differentiability does not matter because the calculation is
made for the previous batch records.

To generalize the above idea, we consider the following
compensator in which all the available variables in the
previous batch are combined 'linearly plus a output feed-
back loop for real-time rejection of random disturbances.

uy=Fug_1+Er—H1}7k-1‘Ho)7k (4)

In the above equation, F, E, H, and H, are transfer
functions. Except Hy, they need not be proper and/or causal
because their operations are taken on preacquisited or
prespecified signals. Multiplying P on both sides of eq. (3)
and then replacing Pu with y-d-w gives the foliowing
recursion equation.

[1+PH0])V|;= [F—PHﬂyg_1+PEr+[1—F]d+[wk—Fw,,_1] (5)

Assume that w is zero and
Yo iS

{ ¥+ } converges. Then the limit

)'m="'lw%ﬁo+—ﬁ-l]-[PEr+[l-—F]d] 6

If we choose

F=1 and E=H,+H; )]
the effect of d is self-eliminated and y is equal to r. The
basic formular of the feedback assisted iterative learning
control (FBALC) scheme through which the proposed control
objective can be achieved is therefore
up=ui 1 —Hiye1-Hoe+ [Ho+HyJr 8
Note that the choice in eq. (7) does not require any in-
formation about the process. The first two terms in the
righthand side of eq. (8) compose the learning block whereas
the third term represents the feedback control block. The
filtered reference trajectory may be splitted over these two
blocks with any proportion primarily according to the type of
the feedback controller chosen. If the feedback controller is of
error—feedback type, then Hyr is assigned to the learning
biock. If a two-degree—of- freedom controller of the type
u=Cr-Hgy ()]
is used in the feedback loop, then [Hy+H,-C|r is appor-
tioned to the leaming block. In Fig. 1, a schematic diagram

of the FBALC is given. With this control scheme, eq. (5) is
rearranged to

1-PH P[Hy+H
Ye= 1+PH; Vi1 [1+01:H01] r+ 1+1PHO [we—w-1] (10)
CONVERGENCE

When w = 0, eq. (10) can be recast to a recusion equation
for the control error.

1-PH,

ey= 1+—PHU_e k-1 where e=r—y

(11

To derive the convergence condition for the above equation,
we introduce the || - | » norm which is defined by
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leld=—r [ 1eGo)itmo-["1er 1% (2

Taking the norm on both sides of eq. (12) gives the follow—
ing inequality.

1-PH 1-PH
el 2= n Tpﬂ_;ek—l " ,S H —17131:1% ll leek-lll 2 (13)
1-PH, . . "
Here, | T+PH, Il 4 is the induced operator norm defined
by
1-PH, ] _ sup | _1-PUe)H;i(je) (14)
“ 1+PH, ‘z# ® T+P(jo)H, (o)

From eq. (13), we can see eq. (11) converges to its sta-
tionary point, say e = 0, if e; is bounded and

1-P(jo)H1(ja)
T+P(j)Hy(jo)

i | 1 <1 or equivalently

| 1-P(je)H1(jo) | < | 1+P(ju)He(jo) | for all o€ (-, ®)
(15)

In the first run of the iterative learning, only the feedback
control will be carried out. Therefore, the boundedness of e
is satisfied if the feedback loop is input—output stable. From
this reasoning, we have the following theorem for the
convergence of the basic scheme of the FBALC.

<Theorem 1> Consider the FBALC algorithm, eq.(8) applied
to the batch process, eq.(1). Assume there is no random dis—
turbance w. If 1+P{(s)Ho(s)=0 has only stable roots and the
inequality (15) holds, then

EEE Ir=yeli2=0

When theorem 2 holds, ex is bounded as follows.

1-PH k-1
leclz < | ! ||2 et

“TvPH, (16)

FBALC BASED ON AN INVERSE PROCESS MODEL

In the preceding section, we have shown that the operator
norm determines the rate of convergence of the FBALC. If
the norm is zero, perfect tracking is achieved in only one
iteration. If it is close to 1, very slow convergence will result.
This tells that the most preferred choice of H; is P ~!. Since

the exact process model is practically unavailable, we propose
a FBALC based on an inverse process model as follows.

we=u- P 'y -Hyut [Hyr P (17

where P is a nonminal process model. The convergence
condition for this scheme is described by the following in-
equality.

P (jo) - Plia)

P o) <

| 1+ P{jw)Holjo) | (18)

Eq. {18) indicates that the FBALC converges if the rela-
tive model uncertainty is bounded by the absolute value of
the return difference of the feedback loop.

Usually, the feedback controller, Ho, is designed such that it
contains an integral mode for rejection of drifting
disturbances. With this kind of controller, typical plots of the
loop gain and the resulting allowadble error bound appear as
shown Fig. 2. From this figure, we can see that a large
model error is permitted in the low frequency range whereas



only a limited model error, less than 100 %, is allowed in the
high frequency range. Especially, at the crossover frequency,
the allowed model error is reduced to | 1-1/GM |, where
GM is the gain margin. If GM=2 is chosen, the allowed
model error is limited to only 50 % at the crossover
frequency. Usually, the models tend to describe well the
steady state and low frequency behavior of processes but
become inaccurate at high frequencies. In this respect, the
allowable model error bound for the FBALC seems to be
somewhat stringent in the medium to high frequency range.

Graphical Interpretation of the Convergence Condition

Graphically, eq. (15) means that P(je)/ P(je) should re-
main inside the circle with the center at (1,0) and radius
| 1+P(jo)Ho(jo) | for each w. One thing we have to notice
is the convergence region approaches the unit circle cen—
tered at (1,0) as o increases to infinity. Since the circle in
the limit is placed only in the first and fourth quadrants
touching the origin, P(jo)/P(jo) should at least have a finite
magnitude and produce a net angle contribution between -90°
to 90° at the infinite frequency.

P_.’E | P(jo)/Pjo) | < o {magnitode condition)  (19)
lim | arg P(ja)/P (jo) | < 90° (phase condition) (20)

Although these conditions reflect only a part of the neces—
sity for convergence, they play an important role especially in
ruling out the cases where the convergence is violated.

Now we consider some important process models and
investigate what specific problems arise when the FBALC is
applied to each process.

[Case 1] First-order Process

Assume that P=K/(xs+1) and P=Kk/(is+1). Then
P/P=(K/K)(ts+1/xs+1). Here, (K/K)(zs+1/ts+1) is a
linear fractional transformation and maps s=j, o€[0,®),
into a half circle as shown in Fig. 3. The half circle starts at
K/K and terminates at K</Kx. As far as the K and =

have correct signs, P(ju)/P (jo) never crosses the imaginary
axis and runs into the left half plane. Thus, both the phase
and the magnitude conditions are satisfied, which implies that
convergence is likely.

To have a faster convergence, the plot should preferably
terminate at a point close to (1,0). From this consideration,
we can draw the following modeling guidelines for this case:
Overestimation or underestimation of both X and < is safer
than overestimation of K with underestimation of <t or vice
versa. The most unfavorable choice is overestimation of <t
with underestimation of K.

[Case 2] When the order of the process transfer function is
not exactly known.
First, consider the case where the pole excess of P(s) is

larger than that of P(s). In this case, p(je)/P(ja) app-
roaches the orgin with the angle of —90 multiplied by pole
excess difference between P(s) and P(s) as o goes to
infinity, Therefore, if the pole excess differs by larger than 1,
the phase condition is violated and the FBALC inevitably
diverges. On the other hand, when the difference in pole
excess is 1, the phase condition is satisfied and the
convergence is still likely.

Next we consider that the pole excess of P(s) is smaller

than that of P(s). In this case, the magnitude condition (19)
is always violated.

We can recognize that exact knowledge of the process order
is very important in FBALC implementation. Underestimation
of the process pole excess may be allowed but the differ—
ence should not be more than 1.

[Case 3] Nonminimum Phase Processes
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Nonminimum phase processes contain right half plane
(RHP) zeros or time delay or both.

First, consider a process with a pure time delay of which
the value is not exactly known In this case,
arg P(j)/ P (ju) increases without bound with e, which
says that the phase condition (20) is not satisfied. In Fig. 4,
we show the loci P(jw)/ P (jo) for various model parmeters

when P(s)=Ke */(1s+1) and P=Ke */(is+1). We can
clearly see the convergence condition can never be satisfied
as long as there is an error in time-delay estimation. The
degree of violation, however, can be minimized by properly
choosing model parameters.

Next, we consider the process with RHP zeros. In order for
the learning block not to be unstable, P(s) should not have
unstable zeros. Note that a RHP zero gives a phase lag from
0 to -90 with increasing magnitude ratio as © increases.
Attempt to compensating the magnitude change in
P(jo)/P (jo) by placing LHP zeros in P(jo) will double the
phase lag, thus violates the phase condition (20). Likewise,
attempt to compensating the phase lag of the RHP zeros by
placing LHP poles in P{jo) only results in amplification of
the diverging magnitude. This violates the magnitude
condition (21). Simply neglecting the RHP zeros also causes
similar problems.

As far as the basic FBALC algorithm is concerned, it
seems to be very hard to satisfy the convergence condition
Exact knowledge of the time delay as well as the process
order, which is impossible in practice, is a minimum re-
quirement. In general, the process signals are majorly
composed of low frequency components. Therefore, even
when the convergence condition is infringed at high
frequencies, we can still anticipate tendency of convergence
for the first few iterations. Symptoms of divergence will
emerge thereafter.

Actually, the learmning algorithm need not be iterated
continuously. The learning control signal obtained through a
few number of iteration before the learning starts to show
symptoms of divergence will still be helpful in improving the
control performance.

FILTERED FBALC FOR IMPROVED ROBUSTNESS

The basic FBALC derived in the preceding sections has an
ability to accomplish the asymptotically perfect control with
an imperfect process model, However, the mathematical
requirement of the model seems to be somewhat stringent.
For example, the order of the process should be estimated as
precisely as possible: the time-delay should be known
exactly. Even in this case, there seems to be no appro-
priate way to deal with the processes with unstable zeros.

In this section, we modify the basic FBALC to relax the
restrictive modeling requirements while sufferring a loss of
the perfectness of the original control objective to a degree.
For this purpose, we consider the following filtered algorithm.

ue=Fu, -F B 'y, | ~Hpy,+[Ho+F B '1r (21)
where F is a low-pass filter. Multiplying P on both sides of
eq. (21) and substituting Px with y-d-w gives

[1+PH,lys= F{1-P P ‘lys1+P[Ho+F B 'lr+ ©22)

[1-Fla+{wi-Fw,_]
Through the similar analysis as in the basic FBALC, we can
obtain the following theorem for the convergence of the
filtered algorithm.

<Theorem 2> Consider the filtered FBALC, eq.(21) applied to
the batch process, eq.(1). Assume that there is no random
disturbance o. In this case, if 1+P(s)H,(s)=0 has only
stable roots and

PGo) Pl (jo) -1
e | <1 (23)

sup .
@ G ||



then the FBALC loop is stable and { y:(s) | converges to the
limit

= -1

P[Ho+F P ] r(s)+[1-F] d(s)

= — 24
yals) [1-F)+P[Hy+F P ) 24
Convergence Region
The condition (24) can be rewritten as
P{jo) | 1+P(jo)Ho(je) |
B ljo) TF(o) | forall o (25)

When F(s) is a low pass filter with the unit d.c. gain, the
convergence region especillay at high frequencies will be
greatly enlarged while rendering the low frequency con-—
verence region, which already has a sufficient margin, al-
most intact. Therefore, with the aid of this filter, the
robustness of the FBALC is greatly improved, and estimation
errors in the process order as well as time delay can now be
allowed to some extent. In addition, the process with RHP
zeros may also become an object of the FBALC.

From the view point of robustness, it will be more ad-
vantageous to have a filter which has a small magnitude.
However, such a filter leads the ultimate output profile more
distorted. A trade-off 1is, therefore, needed between
robustness and performance when we choose a filter.

Ultimate Tracking Performance

As is given in theorem 2, the asymptotic perfectness of the
basic FBALC is inevitably distorted when the filter is
introduced. Of course, degree of the distortion depends on the
detailed shape of the filter F(s). When F(s)=1, the
algorithm coincides with the original basic FBALC. On the
other hand, when F(s) = 0, the learning block ceases to work
and the FBALC becomes the feedback—only controlier. In this
case, the limit profile appears to be

PH,

T7PH, "9+

d(s) 26)

_ 1
yals)= I+PH,

which itself is the closed-loop response of a feedback loop.
Considering these two extremes, we can expect that the
performance of the filtered FBALC lies between the perfect

tracking arnd the one by the feedback-only control.
Design Guide of the Learning Block Filter

As was discussed above, F(s) should be a low pass filter
with the unit d.c. gain. The filter need not be of any spe—
fic form. Its design, however, requires a trade-off between
robustness and performance as is in the feedback controller
design. We arbitrarily suggest the following form for the
filter

1

FO= e

27

which has two adjustable parameters. Although no rigid rule
is there in determining the order n, n should preferrably be
equal to or greater than the pole excess of P(s) in order
for the compensator F{s) P (s) not to be a differentiator. The
parameter A determines the band-width of the filter. At the
corner frequency,e=1/A, the filter gain reduces to 1/ 42"
Since the convergence region reaches minimum at around the
crossover frequency of the loop gain, P(s)Hg(s), 2 should
preferably be determined such that 1/A is smaller than the

crossover frequency so as to sufficiently enlarge the restricted
convergence region around the crossover frequency.

NUMERICAL ILLUSTRATIONS

In this section, two numerical examples are given to de-
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monstrate the behavior of the FBALC. In both examples, we
assume the following second-order process subject to a
sinusoidal-type external disturbance.

y(8) = [/ s+ 1)(3s+ D] uls) + 0.75/(s%+0.75%) (28)
The following error—feedback PI controller is assumed in the
feedbak loop.

Ho(s)=5(1+1/2s) (29)

The nominal models are taken differently in each example.

[Example 1] In this example, the following model is used in
the learning block design.

P(s)=12/(s+1)15s+1) (30)
It is assumed that the order of the process is known but the
steady state gain and also the dominating time constant are
falsely estimated.

In Figs. 5 and 6, performance of the basic FBALC is sum-
merized. The loci, 1-P(jo)/ P(ju) and 1+P(ju)Ho(je), are
shown together in Fig. 5 to examine the convergence pro-
perty. We see that the convergence condition is nicely met
although the dominant time constant is estimated 100%
smaller than the true value. Result of the learning control is
shown in Fig. 6. Starting from the Pl-only control in the
first run, the output almost converges to the reference
trajectory in three iterations while rejecting the external
disturbance. The control input, however, shows somewhat
large hunting. It is majorly caused by the two-times nu-
merical differentiation in the learning block.

Fig. 7 is the learning results when the modifying filter with
n=2 and »==035 is introduced to moderate the excessive
fluctuation in the control input. The converged output profile
is a little bit distorted, but the hunting of the control input
could be significantly moderated.

[Example 2] In this example, the process transfer function is
modelled as

P(s)=1.2¢ 0%/255+1 (31)
It is assumed that the short time constant is approximated by
a time delay and the dominant time constant as well as the
steady state gain are estimated with some error.

Fig. 8 shows the convergence behavior of the basic
FBALC. As might be expected, the convergence condition
can not be met in this case, which is again verified through
numerical simulation shown in Fig. 9. As is partly shown in
Fig. 9, however, tracking performance of the FBALC appears
to be better than that of the Pl-only control up to fifth
iterations. After then, the output starts to oscillate showing a
tendency of divergence.

To remedy the divergence, we introduced a modifying fiter
with n=2 and 1=0.82. Figs. 10 and 11 show the behaviors
of the filtered FBALC. We can see that the convergence
condition is now satisfied but the output converges to a
somewhat distorted profile. The converged profile, however, is
still better than the one the Pl-only control can give. The
control input is significantly moderated in this example, too,
compared to that obtained in the the basic FBALC.

Through the above two examples, we see that the
modifying filter resolves the potential divergence problem
while relieving the excesive fluctuation in the control input.
Distortion of the output profile, however, becomes serious in
some cases. In example 2, the output response up to the
third run looks better than the converged profile by the
filtered FBALC. In this case, it will be better to take the
learning control signal at the third run by the basic FBALC
and to use it for the subsequent runs.

CONCLUSIONS

An inverse model-based feedback-assisted leaning control
has been proposed together with a filtered version, pur-



posing for batch process control. Some of the important

consequences obtained through analyzing the proposed aigo-

rithm and through numerical simulations are as follows:

1. Convergence rate of the learning is maximized when the
inverse process transfer function is used in the learning

block.

2. Bound of the allowable modeling error varies with fre-
quency. Generally, the error bound becomes most stringent at

around the crossover frequency of the feedback loop.

3. In order for the basic algorithm to be convergent, esti—
mation error in process order may be allowed only when the

Im

Kz’ K'tT K/K’

—t— Re
U

estimated value is smaller than the true value by one; the

time delay should be known exactly.

4, The restricted convergence region in the basic learning

scheme can be enlarged by low-pass filtering of the lear-
ning block but resulting in some distortion of the ultimate
profile. "By properly choosing the filter while
trading-off between convergence and tracking performance,
we can significantly improve the overall performance of the

output

learning.

Fig 3. Nyquist plot of first-order process

Ia \lm

5. Though the proposed learning control scheme has been

developed for linear systems, it also has a potential to be
adapted for control of a large class of nonlinear systems. It is
owing to the intrinsic property of the learning algorithm,
which can self-compensate disturbances with the same

pattern,
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